【强化学习】在强化学习中,优先经验回放PER的作用和原理是什么?

目录

传统经验回放

优先经验回放(PER)的原理

1. 重要性度量

2. 采样概率

3. 重要性加权

PER的实现方法

PER的优势

总结


        优先经验回放(Prioritized Experience Replay, PER)是强化学习中的一种技术,旨在提高训练效率和算法性能。它是对传统经验回放(Experience Replay)的一种改进,特别适用于深度Q学习(Deep Q-Learning)等强化学习算法。以下是PER的详细解答,包括其作用、原理、实现方法和优势。

传统经验回放

        在强化学习中,经验回放是一种通过存储智能体在训练过程中经历的状态、动作、奖励和下一状态(即经历)来改进学习效率的方法。智能体从经验回放缓冲区中随机抽取样本进行训练,这有助于打破样本间的相关性,从而提高学习的稳定性效率

        传统经验回放的核心思想是通过均匀地缓冲区抽取样本来进行训练,这种方法虽然简单,但可能会导致一些问题。例如,重要的经验可能被忽略,而不重要的经验则被频繁采样,导致学习效率不高

        然而,简单的随机抽取方法可能会导致一些重要的经验被忽视。比如,某些经验可能包含了对当前策略改进非常重要的信息,但由于它们在回放过程中出现的频率较低,智能体可能无法有效利用这些关键经验。 

优先经验回放(PER)的原理

        优先经验回放的核心思想是根据经验的重要性来调整抽取的概率,即

### Per-Token 的定义及其在 IT 领域的具体用法 #### 定义 `Per-token` 是一种描述单位的方式,意指针对每一个单独的标记(token)进行某种特定的操作或分配资源。这种概念广泛存在于自然语言处理(NLP)、机器学习模型推理、量化技术以及其他计算机科学领域中[^1]。 #### 在 NLP 中的应用 在自然语言处理领域,`per-token` 主要用于表示对文本分割后的最小语义单元——即 tokens ——逐一施加某类算法逻辑的过程。比如当提到 “每 token 的生成成本” 或者 “按 token 收费”,实际上是指对于输入字符串经分词器拆解出来的每个片段独立计价或评估消耗的时间/空间开销等指标[^1]。 ##### 示例场景之一 - LLM 输出长度控制 大型语言模型(LLMs)如 GPT 系列产品,在设定最大上下文窗口大小时经常提及 `max_tokens` 参数,该参数决定了允许的最大新生成字符数量也就是所谓的 total number of outputted tokens。这意味着如果希望限制一段话不超过一定字数,则可以设置合适的 max_tokens 数值来达成目的。 ##### 示例场景之二 - 序列标注任务 另外,在命名实体识别(NER)、情感分析之类的序列标注问题里面,“per-token accuracy” 成为了衡量分类精确程度的重要标准之一。这里指的是正确预测单个位置标签的概率平均下来的表现情况[^2]。 #### 在模型训练与优化中的角色 除了上述讨论外,还有其他几个方面也体现了 per-token 方法论的重要性: - **强化学习环境下的价值估计** 如参考资料所提[_get_per_token_logps](https://github.com/lvwerra/trl/blob/main/trl/models/modeling_base.py),此函数负责返回指定范围内各时间步对应 log-probabilities 列表形式的结果集。这对于后续构建损失函数至关重要,因为能够帮助我们更好地理解当前策略相对于基线版本的优势所在[^2]。 - **混合精度训练期间权重更新规则制定** 考虑到现代 GPU 架构支持多种浮点格式存储数据的特点,研究人员提出了几种不同的量化手段降低内存占用的同时维持较高的准确性水平。其中就包括了专门面向激活值设计的 per-token 动态量化方案,它可以灵活应对因批次间波动引起的变化趋势[^4]。 #### 技术实现案例分享 以下是关于如何利用 Python 编程语言模拟简单版 per-token 操作的一个实例演示程序: ```python from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") text = "Transformers library is useful." tokens = tokenizer.tokenize(text) for idx, tok in enumerate(tokens): print(f"Token {idx}: '{tok}'") ``` 上面这段脚本展示了怎样借助 Hugging Face 提供的工具包快速加载预训练好的 BERT 分词组件,并将其作用于自定义句子之上进而获取逐一分割成果列表。 --- ### 总结 综上所述可以看出,无论是在理论层面还是工程实践中,围绕着“per-token”的一系列技术理念都扮演着不可或缺的角色。从最基础的语言建模原理出发延伸至复杂的端到端解决方案开发全过程,始终贯穿着这一核心思想的存在意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值