【gym】【连续动作空间】【Bipedal Walker 双足助行器】

目录

Bipedal Walker 双足助行器

Description 描述

Action Space 动作空间

Observation Space观察空间

Rewards 奖励

Starting State 起始状态

Episode Termination回合终止

Arguments 参数#

Version History版本历史记录#


Bipedal Walker 双足助行器

../../../_images/bipedal_walker.gif

This environment is part of the Box2D environments. Please read that page first for general information.
此环境是 Box2D 环境的一部分。请先阅读该页面以获取一般信息。

Action Space

 动作空间

Box(-1.0, 1.0, (4,), float32)

Observation Shape 

状态形状

(24,)

Observation High 

状态上限

[3.14 5. 5. 5. 3.14 5. 3.14 5. 5. 3.14 5. 3.14 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]

Observation Low 

状态下限

[-3.14 -5. -5. -5. -3.14 -5. -3.14 -5. -0. -3.14 -5. -3.14 -5. -0. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. ]

Import 

gym.make("BipedalWalker

### 处理OpenAI Gym中的连续动作空间 在处理具有连续动作空间的任务时,如`Pendulum-v1`环境,通常采用的方法是通过特定算法来近似最优策略。对于此类问题,深度强化学习方法之一——Deep Deterministic Policy Gradient (DDPG),是一种有效的方式[^4]。 #### 使用DDPG解决连续动作空间问题 DDPG结合了Q-learning的优点以及Actor-Critic架构,在面对连续控制任务上表现优异。下面是一个简单的例子展示如何设置并训练一个基于PyTorch框架下的DDPG模型: ```python import gymnasium as gym import torch from torch import nn import numpy as np class Actor(nn.Module): def __init__(self, state_dim, action_dim, max_action): super(Actor, self).__init__() self.l1 = nn.Linear(state_dim, 400) self.l2 = nn.Linear(400, 300) self.l3 = nn.Linear(300, action_dim) self.max_action = max_action def forward(self, x): x = torch.relu(self.l1(x)) x = torch.relu(self.l2(x)) x = self.max_action * torch.tanh(self.l3(x)) return x def evaluate_policy(policy, eval_episodes=10): env_name = 'Pendulum-v1' env = gym.make(env_name) avg_reward = 0. for _ in range(eval_episodes): obs, done = env.reset(), False while not done: action = policy(torch.FloatTensor(obs).unsqueeze(0)).cpu().data.numpy().flatten() obs, reward, terminated, truncated, info = env.step(action) done = terminated or truncated avg_reward += reward avg_reward /= eval_episodes print("---------------------------------------") print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}") print("---------------------------------------") env.close() return avg_reward ``` 此代码片段展示了创建actor网络的过程,并定义了一个评估函数用于测试已训练好的policy性能。为了完整实现DDPG还需要构建critic网络、经验回放机制以及其他组件。 #### 关键挑战与解决方案 当涉及到连续动作空间时,存在几个主要的技术难题需要克服,比如探索-利用困境(exploration-exploitation dilemma),即如何平衡尝试新行为和重复已知良好行为之间的关系;还有延迟奖励的问题,这指的是即时反馈可能无法立即反映长期效果,因此需要设计有效的信用分配方案以促进更好的决策过程[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值