强化学习中,为什么用AC架构

目录

强化学习中,为什么用AC架构

为什么用AC架构?

AC架构的工作原理

AC架构的优缺点

优点:

缺点:

相关算法:基于AC架构的算法

总结


强化学习中,为什么用AC架构

在强化学习(Reinforcement Learning, RL)中,AC 架构(即 Actor-Critic 架构)是一种非常常用的架构,用于训练智能体(Agent)在环境中执行任务。

AC架构结合了策略梯度方法和价值迭代方法,通过分离策略价值函数的估计来提高学习的效率和稳定性。

为什么用AC架构?

  1. 提高训练效率和稳定性

    • 策略梯度方法直接优化策略函数,通过学习一个概率分布来决定行动。然而,策略梯度方法在高方差和低效率方面可能会遇到问题,导致学习过程非常慢,或者训练不稳定。
    • 价值函数方法(如Q学习)则通过估计每个状态的价值来改进策略,通常可以通过值函数估计减少方差,学习更稳定。

    AC架构结合了这两种方法。Actor负责根据当前策略选择动作(即策略网络),而Critic评估当前状态的价值并帮助更新策略。Critic 为 Actor 提供了一个基准,使得策略更新的方差较小,进而提高训练的稳定性和收敛速度。

  2. 降低方差: 策略梯度方法容易出现高方差,这使得学习过程的不确定性很大,导致训练过程的波动。而AC架构通过将值函数(Critic)引入其中,提供了一个“价值基准”来减少这种方差。Critic 的目标是估计动作的价值或状态的价值,通过这种方式,Actor 在选择动作

### ACActor-Critic)架构原理 ACActor-Critic)是一种结合了基于值函数的方法和基于策略的方法的强化学习框架。它通过两个主要组件来完成任务:Actor 和 Critic。 #### Actor 的功能 Actor 是负责制定决策的部分,其目标是优化一个参数化的策略函数 \( \pi_\theta(a|s) \),该函数表示在状态 \( s \) 下采取动作 \( a \) 的概率分布。Actor 使用梯度上升方法更新策略参数 \( \theta \)[^1]。 #### Critic 的功能 Critic 负责评估当前策略的好坏,通常通过估计状态价值函数 \( V(s) \) 或优势函数 \( A(s, a) \) 来实现。Critic 提供了一个信号,用于指导 Actor 如何改进策略[^2]。 #### 更新机制 - **Actor 更新**:利用 Critic 提供的价值信息计算策略梯度,并据此调整策略参数。 - **Critic 更新**:通过对环境的真实回报进行拟合,逐步逼近真实的状态价值函数或优势函数。 这种协同工作的设计使得 Actor 可以更高效地探索行动空间,而 Critic 则提供稳定性和收敛保障[^3]。 --- ### 实现方法 以下是使用 Python 和 TensorFlow/Keras 进行简单 Actor-Critic 算法实现的一个例子: ```python import numpy as np import tensorflow as tf from tensorflow.keras import layers, models class Actor(models.Model): def __init__(self, action_dim): super(Actor, self).__init__() self.fc1 = layers.Dense(64, activation='relu') self.fc2 = layers.Dense(action_dim, activation='softmax') def call(self, state): x = self.fc1(state) policy = self.fc2(x) return policy class Critic(models.Model): def __init__(self): super(Critic, self).__init__() self.fc1 = layers.Dense(64, activation='relu') self.fc2 = layers.Dense(1) def call(self, state): value = self.fc2(self.fc1(state)) return value def train_actor_critic(actor, critic, optimizer_actor, optimizer_critic, states, actions, rewards, next_states, done): with tf.GradientTape() as tape: values = critic(states) target_values = [] discounted_reward = 0 for reward in reversed(rewards): discounted_reward = reward + (1 - int(done)) * 0.99 * discounted_reward target_values.insert(0, discounted_reward) advantages = np.array(target_values) - values.numpy() # Update Critic loss_critic = tf.reduce_mean(tf.square(values - target_values)) grads_critic = tape.gradient(loss_critic, critic.trainable_variables) optimizer_critic.apply_gradients(zip(grads_critic, critic.trainable_variables)) with tf.GradientTape() as tape: policies = actor(states) log_probs = tf.math.log(tf.reduce_sum(policies * tf.one_hot(actions, depth=policies.shape[-1]), axis=-1)) loss_actor = -tf.reduce_mean(log_probs * advantages) grads_actor = tape.gradient(loss_actor, actor.trainable_variables) optimizer_actor.apply_gradients(zip(grads_actor, actor.trainable_variables)) ``` 上述代码定义了一个简单的 Actor 和 Critic 模型,并展示了如何训练它们。注意,在实际应用中可能还需要加入更多的细节处理,比如经验回放、正则化等。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值