目录
强化学习中,为什么用AC架构
在强化学习(Reinforcement Learning, RL)中,AC 架构(即 Actor-Critic 架构)是一种非常常用的架构,用于训练智能体(Agent)在环境中执行任务。
AC架构结合了策略梯度方法和价值迭代方法,通过分离策略和价值函数的估计来提高学习的效率和稳定性。
为什么用AC架构?
-
提高训练效率和稳定性:
- 策略梯度方法直接优化策略函数,通过学习一个概率分布来决定行动。然而,策略梯度方法在高方差和低效率方面可能会遇到问题,导致学习过程非常慢,或者训练不稳定。
- 价值函数方法(如Q学习)则通过估计每个状态的价值来改进策略,通常可以通过值函数估计减少方差,学习更稳定。
AC架构结合了这两种方法。Actor负责根据当前策略选择动作(即策略网络),而Critic评估当前状态的价值并帮助更新策略。Critic 为 Actor 提供了一个基准,使得策略更新的方差较小,进而提高训练的稳定性和收敛速度。
-
降低方差: 策略梯度方法容易出现高方差,这使得学习过程的不确定性很大,导致训练过程的波动。而AC架构通过将值函数(Critic)引入其中,提供了一个“价值基准”来减少这种方差。Critic 的目标是估计动作的价值或状态的价值,通过这种方式,Actor 在选择动作