摘要
空气动力学,已知高超声速绕流中的激波和膨胀波关系式,结合高超声速流动的特点, 和真实气体效应,分析激波前后参数变化的近似表达式。
在高超声速流动中,激波和膨胀波是两种重要的流动特征。激波是由于流体速度超过音速时所产生的密度、温度和压力骤增的现象,而膨胀波则是流速降低时,流体状态逐渐变化的现象。分析高超声速绕流中的激波和膨胀波关系以及真实气体效应,对于理解激波前后参数变化至关重要。
激波与膨胀波的基本关系
在高超声速流动中,激波和膨胀波的关系式通常涉及流体状态的变化,包括压力、密度、温度和流速等。根据流体力学的基本原理,可以通过以下关系来描述激波和膨胀波前后的变化:
-
激波前后参数变化: 激波前后的参数变化可以通过激波关系式进行描述。对于不可压缩流体,激波前后的参数变化可以通过以下标准激波关系给出:
-
速度变化:
M2=(γ−1)M12+22γM12−(γ−1)M_2 = \sqrt{\frac{(\gamma - 1)M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)}}其中,M1M_1 和 M2M_2 分别为激波前后流体的马赫数,γ\gamma 是气体的比热比。
-
温度和压力的变化:
T2T1=(γ+1)M12(γ−1)M12+2\frac{T_2}{T_1} = \frac{(\gamma + 1)M_1^2}{(\gamma - 1)M_1^2 + 2} P2P1=2γM12−(γ−1)(γ+1)M12\frac{P_2}{P_1} = \frac{2\gamma M_1^2 - (\gamma - 1)}{(\gamma + 1)M_1^2}其中,T1T_1、T2T_2、P1P_1 和 P2P_2 分别为激波前后流体的温度和压力。
-
-
膨胀波前后参数变化: 在膨胀波中,气流从高压区域流向低压区域,气流速度和温度逐渐降低,且膨胀波中的流体状态变化可通过膨胀关系式给出:
-
流速变化:
M2=M12+(γ−1)M122γM12−(γ−1)M_2 = M_1 \sqrt{\frac{2 + (\gamma - 1) M_1^2}{2\gamma M_1^2 - (\gamma - 1)}}其中,M1M_1 和 M2M_2 分别为膨胀波前后的马赫数。
-
压力、温度和密度的变化:
P2P1=(ρ2ρ1)γ\frac{P_2}{P_1} = \left( \frac{\rho_2}{\rho_1} \right)^\gamma其中,ρ1\rho_1 和 ρ2\rho_2 分别为膨胀波前后的密度。
-
真实气体效应
在高超声速流动中,真实气体效应会显著影响激波前后参数的变化。真实气体效应包括分子间相互作用、气体的热导率、粘度、比热等因素的变化,这些效应通常在较高的温度和压力条件下才显著,特别是在高超声速流动中,当气流的温度和压力达到非常高时,气体的非理想性质不能忽略。
-
非理想气体模型: 对于真实气体流动,通常采用例如Virial方程、Redlich-Kwong方程等状态方程来描述气体的真实行为。在激波前后的参数变化中,真实气体效应会使得流体的比热比γ\gamma和其他热力学参数随着温度和压力的变化而变化,从而影响激波和膨胀波的变化关系。
-
比热比的变化: 在高超声速流动中,由于气体的温度非常高,气体的比热比γ\gamma通常会随温度和压力的变化而发生显著变化。真实气体效应下的比热比通常不再是一个常数,而是与气流的热状态相关。例如,对于空气,当温度升高至较高水平时,气体的比热比可能会小于理想气体情况下的值,导致激波和膨胀波的性质发生变化。
-
激波强度的影响: 真实气体效应还会影响激波的强度。通常,较高的气体温度会导致激波强度减弱,因为气体的比热增大,导致其对能量的吸收能力