Retriever 是 RAG(Retrieval Augmented Generation)管道中最重要的部分。在本文中,我们将使用 LlamaIndex 实现一个结合关键字和向量搜索检索器的自定义检索器,并且使用 Gemini大模型来进行多个文档聊天。
通过本文,我们将了解到如下内容:
- 深入了解 RAG 管道中 Retriever 和 Generator 组件在上下文生成响应中的作用;
- 学习集成关键字和矢量搜索技术以开发自定义检索器,从而提高 RAG 应用程序中搜索的准确性;
- 熟练掌握使用 LlamaIndex 进行数据摄取,提供给LLMs上下文信息;
- 了解自定义检索器在通过混合搜索机制减轻LLM响应中的幻觉方面的重要性;
- 探索高级检索器实现,例如rerank和 HyDE,以增强 RAG 中的文档相关性;
- 了解如何在 LlamaIndex 中集成 Gemini LLM 和嵌入,以生成响应和存储数据,从而提高 RAG 功能;
- 开发自定义检索器配置的决策技能,包括在 AND 和 OR 操作之间进行选择以优化搜索结果。
一、retriever的重要性
要开发自定义retriever,确定最适合我们需求的retriever类型至关重要。这里,我们将实现一个集成关键字搜索和矢量搜索的混合搜索。
矢量搜索根据相似性或语义搜索来识别用户查询的相关文档,而关键字搜索则根据术语出现的频率来查找文档。使用 LlamaIndex 可以通过两种方式实现这种集成。为混合搜索生成自定义检索器时,一个重要的决策是在使用 AND 或 OR 操作之间进行选择:
- AND 操作:此方法检索包含所有指定术语的文档,使其更具限制性,但确保高度相关性。可以将其视为关键字搜索和矢量搜索之间的结果交集;
- OR 操作:此方法检索包含任何指定术语的文档,从而增加结果的广度,但可能会降低相关性。可以将其视为关键字搜索和矢量搜索之间的结果联合。
二、构建自定义retriever
现在让我们使用 LlamaIndex 构建自定义retriever,大致需要如下步骤:
2.1 安装所需的包
在我们的例子中,使用 LlamaIndex 来构建自定义检索器,使用 Gemini 来构建嵌入模型和LLM推理,并使用 PyPDF 来构建数据连接器,因此,需要安装所需的库。
!pip