LLM之RAG实战(四十一)| 使用LLamaIndex和Gemini构建高级搜索引擎

       Retriever 是 RAG(Retrieval Augmented Generation)管道中最重要的部分。在本文中,我们将使用 LlamaIndex 实现一个结合关键字和向量搜索检索器的自定义检索器,并且使用 Gemini大模型来进行多个文档聊天。

通过本文,我们将了解到如下内容:

  • 深入了解 RAG 管道中 Retriever 和 Generator 组件在上下文生成响应中的作用;
  • 学习集成关键字矢量搜索技术以开发自定义检索器,从而提高 RAG 应用程序中搜索的准确性;
  • 熟练掌握使用 LlamaIndex 进行数据摄取,提供给LLMs上下文信息;
  • 了解自定义检索器在通过混合搜索机制减轻LLM响应中的幻觉方面的重要性;
  • 探索高级检索器实现,例如rerank和 HyDE,以增强 RAG 中的文档相关性;
  • 了解如何在 LlamaIndex 中集成 Gemini LLM 和嵌入,以生成响应和存储数据,从而提高 RAG 功能;
  • 开发自定义检索器配置的决策技能,包括在 AND 和 OR 操作之间进行选择以优化搜索结果。

一、retriever的重要性

       要开发自定义retriever,确定最适合我们需求的retriever类型至关重要。这里,我们将实现一个集成关键字搜索和矢量搜索的混合搜索。

       矢量搜索根据相似性或语义搜索来识别用户查询的相关文档,而关键字搜索则根据术语出现的频率来查找文档。使用 LlamaIndex 可以通过两种方式实现这种集成。为混合搜索生成自定义检索器时,一个重要的决策是在使用 AND 或 OR 操作之间进行选择:

  • AND 操作:此方法检索包含所有指定术语的文档,使其更具限制性,但确保高度相关性。可以将其视为关键字搜索和矢量搜索之间的结果交集;
  • OR 操作:此方法检索包含任何指定术语的文档,从而增加结果的广度,但可能会降低相关性。可以将其视为关键字搜索和矢量搜索之间的结果联合。

二、构建自定义retriever

       现在让我们使用 LlamaIndex 构建自定义retriever,大致需要如下步骤:

2.1 安装所需的包

       在我们的例子中,使用 LlamaIndex 来构建自定义检索器,使用 Gemini 来构建嵌入模型和LLM推理,并使用 PyPDF 来构建数据连接器,因此,需要安装所需的库。

!pip
<think>好的,我现在需要帮用户寻找与LLM代理平台解决方案相关的信息。首先,我得明确用户的需求。用户提到了“LLM agent platform solutions”,也就是大型语言模型代理平台的解决方案。这可能涉及到如何构建、部署或优化基于LLM的代理系统。接下来,我应该回忆之前用户提供的引用内容,看看有没有相关的信息可以利用。 根据引用[1],提到构建LLM应用程序的步骤分解,可能涉及到代理平台的设计。引用[2]讨论了评估LLM的挑战,包括可重复性开源模型的解决方案,这可能影响代理平台的稳定性选择。引用[3]则提到大模型相关的岗位面试题,可能涉及实际应用中的技术问题。 接下来,我需要整理常见的LLM代理平台解决方案。通常,这类平台包括开发框架、部署工具、集成服务以及优化方法。例如,LangChainLlamaIndex是常用的开发框架,Hugging Face的Transformers库OpenAI的API提供模型支持。此外,优化方面可能包括微调提示工程。 还要考虑用户可能的深层需求。用户可能不仅需要平台列表,还想了解如何选择适合自己项目的解决方案,或者如何解决实际应用中的问题,比如可扩展性、成本控制、性能优化等。因此,回答中应涵盖这些方面,并提供相关工具或方法的例子,同时引用提供的资料来增强可信度。 最后,生成相关问题,帮助用户进一步探索。比如,开发框架的选择、开源与闭源模型的比较、优化策略等。这些问题应该引导用户深入思考他们项目的具体需求,以及如何应用这些解决方案。</think>### LLM代理平台解决方案概述 LLM(大型语言模型)代理平台旨在通过集成模型能力、工具调用任务编排,构建可落地的智能应用。以下是当前主流解决方案的分类与分析: #### 1. **开发框架与工具链** - **LangChain**:提供模块化组件(如链、代理、记忆模块),支持自定义工作流设计,适合复杂任务编排[^1]。 - **LlamaIndex**:专注于数据索引与检索增强生成(RAG),优化知识密集型任务的准确性。 - **Hugging Face Transformers**:开源模型库,支持快速部署本地化LLM代理[^2]。 #### 2. **云服务与API集成** - **OpenAI Assistants API**:提供预构建工具(如代码解释器、函数调用),简化代理开发流程。 - **AWS Bedrock**:集成多厂商模型(如Anthropic Claude、Cohere),支持企业级代理的规模化部署。 - **Google Vertex AI**:结合Gemini模型与AutoML工具,优化代理的垂直领域适应性。 #### 3. **开源解决方案** - **AutoGPT**:支持目标驱动的自主代理,适用于自动化任务(如数据分析、内容生成)。 - **DSPy**:通过声明式编程优化提示工程与模型微调,提升代理推理能力。 #### 4. **优化与评估** - **提示工程工具**(如PromptFlow):标准化提示模板,降低幻觉风险[^3]。 - **评估框架**(如TruLens):量化代理的准确性、安全性与延迟,解决可重复性问题。 #### 5. **行业应用案例** - **客服自动化**:结合RAG与工具调用,实现工单分类与知识库检索。 - **科研助手**:如ChemCrow代理,通过化学工具链解决跨领域任务[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wshzd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值