流型上的Kalman Filter

同构(isomorphism)是代数中的概念,在双射的基础上保持代数运算。
同胚(homeomorphism)是拓扑中的概念,在双射的基础上,保持开集的对应(即映射和逆映射都是连续的)。
同构说明代数结构相同,同胚说明拓扑结构相同。当然,在Algebraic Topology 中,研究拓扑群等对象时,两者又会联系在一起。

连续时间系统运动学

The true-state kinematics

p ˙ = v v ˙ = a q ˙ = 1 2 q ⊗ ω b ˙ a = n a b ˙ ω = n ω g ˙ = 0 \begin{aligned} \dot{\bold{p}}&=\bold{v}\\ \dot{\bold{v}}&=\bold{a} \\ \dot{\bold{q}}&=\dfrac{1}{2}\bold{q}\otimes \bm{\omega} \\ \dot{\bold{b}}_{a}&=\bold{n}_{a}\\ \dot{\bold{b}}_{\bm{\omega} }&=\bold{n}_{\bm{\omega} } \\ \dot{\bold{g}}&=0\end{aligned} p˙v˙q˙b˙ab˙ωg˙=v=a=21qω=na=nω=0
真值状态的观测来源于IMU测量的加速度和角速度(IMU系)
{ a m = R T ( a − g ) + b a + n a ω m = ω + b w + n ω    ⟹    { a = R ( a m − b a − n a ) + g ω = ω m − b ω − n ω \begin{aligned} & \begin{cases} \bold{a}_{m}=\bold{R}^{T}\left( \bold{a}-\bold{g}\right) +\bold{b}_{a}+\bold{n} _{a}\\ \bm{\omega} _{m}=\bm{\omega} +\bold{b}_{\bold{w}}+\bold{n}_{\bm{\omega} }\\ \end{cases}\\ \implies & \begin{cases} \bold{a}=\bold{R} \left( \bold{a}_{m}-\bold{b}_{a}-\bold{n}_{a}\right) +\bold{g} \\ \bm{\omega} =\bm{\omega} _{m}-\bold{b}_{\bm{\omega}} -\bold{n}_{\bm{\omega}} \end{cases} \end{aligned} { am=RT(ag)+ba+naωm=ω+bw+nω{ a=R(ambana)+gω=ωmbωnω
代入可得

p ˙ = v v ˙ = R ( a m − b a − n a ) + g q ˙ = 1 2 q ⊗ ( ω m − b ω − n ω ) b ˙ a = n b a b ˙ ω = n b ω g ˙ = 0 (true state) \begin{aligned} \dot{\bold{p}}&=\bold{v}\\ \dot{\bold{v}}&=\bold{R}\left( \bold{a}_{m}-\bold{b}_{a}-\bold{n}_{a}\right) +\bold{g}\\ \dot{\bold{q}}&=\dfrac{1}{2}\bold{q}\otimes \left( \bm{\omega} _{m}-\bold{b}_{\bm{\omega} }-\bold{n} _{\bm{\omega}} \right) \\ \dot{\bold{b}}_{a}&=\bold{n}_{\bold{ba}} \\ \dot{\bold{b}}_{\bm{\omega}}&=\bold{n}_{\bold{b}{\bm{\omega}}}\\ \dot{\bold{g}}&=0 \end{aligned}\tag{true state} p˙v˙q˙b˙ab˙ωg˙=v=R(ambana)+g=21q(ωmbωnω)=nba=nbω=0(true state)
写成更简便的形式
x ˙ = f ( x , u , w ) \dot{\bold{x}}=f(\bold{x},\bold{u},\bold{w}) x˙=f(x,u,w)
其中 x \bold{x} x为状态向量, u \bold{u} u为受噪声影响的IMU测量, w \bold{w} w为高斯白噪声扰动
x = [ p v q b a b ω g ] u = [ a m − n a ω m − n ω ] w = [ n b a n b ω ] \bold{x}=\begin{bmatrix}\bold{p}\\\bold{v}\\\bold{q}\\\bold{b_a}\\\bold{b}_{\bm{\omega}}\\\bold{g}\end{bmatrix}\qquad \bold{u}=\begin{bmatrix}\bold{a}_{m}-\bold{n_{a}}\\ \bm{\omega}_{m}-\bold{n_{\bm{\omega}}}\end{bmatrix}\qquad \bold{w}=\begin{bmatrix}\bold{n}_{\bold{ba}}\\\bold{n}_{\bold{b}{\bm{\omega}}}\end{bmatrix} x= pvqbabωg u=[amnaωmnω]w=[nbanbω]

The nominal-state kinematics

系统的名义态运动学方程对应于无噪声和扰动的系统模型。

p ˉ ˙ = v ˉ v ˉ ˙ = R ˉ ( a m − b ˉ a ) + g ˉ q ˉ ˙ = 1 2 q ˉ ⊗ ( ω m − b ˉ ω ) b ˉ ˙ a = 0 b ˉ ˙ ω = 0 g ˉ ˙ = 0 (nominal state) \begin{aligned} \dot{\bar{\bold{p}}}&=\bar{\bold{v}}\\ \dot{\bar{\bold{v}}}&=\bar{\bold{R}}\left( \bold{a}_{m}-\bar{\bold{b}}_{a}\right) +\bar{\bold{g}}\\ \dot{\bar{\bold{q}}}&=\dfrac{1}{2}\bar{\bold{q}}\otimes \left( \bm{\omega} _{m}-\bar{\bold{b}}_{\bm{\omega} } \right) \\ \dot{\bar{\bold{b}}}_{a}&=0 \\ \dot{\bar{\bold{b}}}_{\bm{\omega}}&=0\\ \dot{\bar{\bold{g}}}&=0 \end{aligned}\tag{nominal state} pˉ˙vˉ˙qˉ˙bˉ˙abˉ˙ωgˉ˙=vˉ=Rˉ(ambˉa)+gˉ=21qˉ(ωmbˉω)=0=0=0(nominal state)

The error-state kinematics

x = x ˉ + δ x    ⟹    δ x = x − x ˉ \bold{x}=\bar{\bold{x}}+\delta \bold{x}\implies \delta \bold{x}=\bold{x}-\bar{\bold{x}} x=xˉ+δxδx=xxˉ,其中+,-代指compose和decompose,根据变量类型采取不同的compose方式, 对于四元数
q = q ˉ ⊗ δ q \bold{q}=\bar{\bold{q}}\otimes \delta \bold{q} q=qˉδq
为了简便起见,我们将角速度分成大信号量项 ω ˉ ≜ ω m − b ˉ ω \bar{\bm{\omega}}\triangleq \bm{\omega}_m-\bar{\bold{b}}_{\bm{\omega}} ωˉωmbˉω和小信号量项 δ ω = − δ b ω − n ω \delta \bm{\omega}=-\delta \bold{b}_{\bm{\omega}}-\bold{n}_{\bm{\omega}} δω=δbωnω
ω = ω ˉ + δ ω \bm{\omega}=\bar{\bm{\omega}}+\delta\bm{\omega} ω=ωˉ+δω
于是
q ˙ = q ˉ ˙ ⊗ δ q + q ˉ ⊗ δ q ˙ = 1 2 q ⊗ ( ω m − b ω − n ω ) 1 2 q ˉ ⊗ ( ω m − b ˉ ω ) ⊗ δ q + q ˉ ⊗ δ q ˙ = 1 2 q ˉ ⊗ δ q ⊗ ( ω m − b ω − n ω )    ⟹    2 δ q ˙ = δ q ⊗ ω − ω ˉ ⊗ δ q = ( [ ω ] R − [ ω ˉ ] L ) δ q = [ 0 − ( ω − ω ˉ ) T ω − ω ˉ − ( ω + ω ˉ ) ∧ ] δ q = [ 0 − δ ω T δ ω − ( 2 ω + δ ω ˉ ) ∧ ] δ q \begin{aligned} \dot{\bold{q}}=\dot{\bar{\bold{q}}}\otimes \delta \bold{q}+\bar{\bold{q}}\otimes \dot{\delta \bold{q}}&=\dfrac{1}{2}\bold{q}\otimes \left( \bm{\omega} _{m}-\bold{b}_{\bm{\omega}} -\bold{n}_{\bm{\omega}} \right) \\ \dfrac{1}{2}\bar{\bold{q}}\otimes \left( \bm{\omega}_{m}-\bar{\bold{b}}_{\bm{\omega}}\right)\otimes\delta \bold{q} +\bar{\bold{q}}\otimes \dot{\delta \bold{q}}&=\dfrac{1}{2}\bar{\bold{q}}\otimes \delta \bold{q}\otimes \left( \bm{\omega} _{m}-\bold{b}_{\bm{\omega}}-\bold{n}_{\bm{\omega}}\right) \\ \implies 2 \dot{\delta \bold{q}}&=\delta \bold{q}\otimes \bm{\omega}-\bar{\bm{\omega}}\otimes\delta \bold{q} \\&=\left([\bm{\omega}]_R-[\bar{\bm{\omega}}]_L\right)\delta \bold{q} \\&=\begin{bmatrix} 0 & -\left( \bm{\omega} -\bar{\bm{\omega} }\right) ^{T} \\ \bm{\omega} -\bar{\bm{\omega} } & -\left( \bm{\omega} +\bar{\bm{\omega} }\right) ^{\wedge } \end{bmatrix} \delta \bold{q} \\&=\begin{bmatrix} 0 & -\delta\bm{\omega}^{T} \\ \delta\bm{\omega} & -\left( 2\bar{\bm{\omega} +\delta\bm{\omega} }\right) ^{\wedge } \end{bmatrix} \delta \bold{q} \end{aligned} q˙=qˉ˙δq+qˉδq˙21qˉ(ωmbˉω)δq+qˉδq˙2δq˙=21q(ωmbωnω)=21qˉδq(ωmbωnω)=δqωωˉδq=([ω]R[ωˉ]L)δq=[0ωωˉ(ωωˉ)T(ω+ωˉ)]δq=[0δωδωT(2ω+δωˉ)]δq
δ q \delta \bold{q} δq进行小量近似, δ q = [ cos ⁡ ( ∥ δ θ ∥ / 2 ) δ θ ∥ δ θ ∥ sin ⁡ ( ∥ δ θ ∥ / 2 ) ] ≈ [ 1 δ θ / 2 ] + O ( ∥ δ θ ∥ 2 ) \delta \bold{q}=\begin{bmatrix}\cos(\Vert\delta \bm{\theta}\Vert/2)\\\dfrac{\delta\bm{\theta}}{\Vert\delta\bm{\theta}\Vert} \sin(\Vert\delta \bm{\theta}\Vert/2)\end{bmatrix}\approx\begin{bmatrix}1\\\delta \bm{\theta}/2\end{bmatrix}+O(\Vert\delta\bm{\theta}\Vert^2) δq= cos(δθ∥/2)δθδθsin(δθ∥/2) [1δθ/2]+O(δθ2),于是
[ 0 δ θ ˙ ] = [ 0 − δ ω T δ ω − ( 2 ω + δ ω ) ∧ ] [ 1 δ θ / 2 ] + O ( ∥ δ θ ∥ 2 )    ⟹    δ θ ˙ = δ ω − ω ∧ δ θ − 1 2 δ ω ∧ δ θ + O ( ∥ δ θ ∥ 2 ) \begin{aligned} \begin{bmatrix} 0 \\ \dot{\delta\bm{\theta}} \end{bmatrix}&=\begin{bmatrix} 0 & -\delta \bm{\omega}^{T} \\ \delta \bm{\omega} & -\left( 2\bm{\omega} +\delta \bm{\omega}\right) ^{\wedge } \end{bmatrix}\begin{bmatrix} 1 \\ \delta \bm{\theta} /2 \end{bmatrix}+O\left( \left\| \delta \bm{\theta} \right\| ^{2}\right) \\ \implies\dot{\delta\bm{\theta}}&=\delta \bm{\omega}-\bm{\omega}^{\wedge}\delta\bm{\theta}-\dfrac{1}{2} \delta\bm{\omega}^{\wedge}\delta \bm{\theta}+O(\Vert\delta\bm{\theta}\Vert^2) \end{aligned} [0δθ˙]δθ˙=[0δωδωT(2ω+δω)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shilong Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值