【YOLOv10改进[Conv]】KAN系列 |使用KACNConv改进C2f + 含全部代码和详细修改方式 + 手撕结构图

本文将进行KAN系列 |使用KACNConv改进C2f 的实践,助力YOLOv10目标检测效果的实践,文中含全部代码、详细修改方式以及手撕结构图。助您轻松理解改进的方法。训练速度会慢一些,要有心理准备哈

改进前和改进后的参数对比:

 

目录

一 卷积Kolmogo

### YOLOv10改进 C2f 组件的方法 为了在YOLOv10改进C2f组件,可以借鉴Metaformer TPAMI2024提出的RandomMixingFormer机制来增强特征提取能力。具体来说,在YOLOv10的配置文件`cfg/models/v10/.yaml`中引入新的模块设计[^2]。 #### 配置文件修改 首先,在指定路径下的`.yaml`文件中定义新架构参数: ```yaml # yolov10/cfg/models/v10/yaml 文件片段 backbone: - [focus, [64, 3]] - [conv, [128, 3, 2]] - [bottleneck_csp, [128, 3, True]] - [random_mixing_former, [128, 3]] # 新增 RandomMixingFormer 层 neck: ... ``` 此部分通过增加名为 `random_mixing_former` 的层来集成来自 Metaformer 的创新技术[^1]。 #### Python 实现代码 以下是Python实现的一个简化版本,用于展示如何将RandomMixingFormer融入到YOLOv10框架内: ```python import torch.nn as nn class RandomMixingFormer(nn.Module): def __init__(self, channels_in=128, num_heads=8): super(RandomMixingFormer, self).__init__() self.norm = nn.LayerNorm(channels_in) self.multihead_attn = nn.MultiheadAttention(embed_dim=channels_in, num_heads=num_heads) def forward(self, x): residual = x x = self.norm(x.transpose(0, 1)) attn_output, _ = self.multihead_attn(query=x, key=x, value=x) out = (attn_output + residual).transpose(0, 1) return out def add_random_mixing_to_yolov10(model_config_path='yolov10/cfg/models/v10/model.yaml'): import yaml with open(model_config_path, 'r') as file: config = yaml.safe_load(file) # 增加随机混合前向传播单元至模型结构描述列表中 new_layer_def = ['random_mixing_former', {'channels_in': 128}] backbone_layers = config['backbone'] backbone_layers.insert(-1, new_layer_def) # 插入倒数第二位置之前 with open('modified_' + model_config_path, 'w') as updated_file: documents = yaml.dump(config, updated_file) if __name__ == "__main__": add_random_mixing_to_yolov10() ``` 上述代码展示了怎样利用PyTorch构建并应用RandomMixingFormer作为额外处理阶段的一部分,从而提升原有YOLOv10网络的表现力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackilina_Stone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值