【YOLOv8改进[Conv]】KAN系列 |使用KAGNConv改进C2f + 含全部代码和详细修改方式 + 手撕结构图

本文将进行在YOLOv8中使用KAGNConv改进C2f 实践,助力YOLOv8目标检测效果,文中含全部代码、详细修改方式以及手撕结构图。助您轻松理解改进的方法。训练速度会慢一些,要有心理准备哈

改进前和改进后的参数对比:

 

目录

一 卷积Kolmogorov-Arnold网络集合

二 使用KAGNConv改进C2f

### 如何优化 YOLOv8Conv 卷积层 #### 使用 CoordConv 替换传统 Conv 为了使卷积层能更好地处理需要空间感知的任务,可以采用 CoordConv 来替代传统的 Conv 层。这种动不仅简单而且强大,通过向输入特征图中嵌入显式的坐标信息,使得模型能够更加高效地学习空间变换,进而提升不同应用场景下的表现效果[^1]。 ```python import torch.nn as nn class CoordConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(CoordConv, self).__init__() self.conv = nn.Conv2d(in_channels + 2, out_channels, kernel_size, stride, padding) def forward(self, x): b, _, h, w = x.size() xx_channel = torch.arange(w).repeat(1, h, 1) yy_channel = torch.arange(h).repeat(1, w, 1).transpose(1, 2) xx_channel = xx_channel.float() / (w - 1) yy_channel = yy_channel.float() / (h - 1) xx_channel = xx_channel * 2 - 1 yy_channel = yy_channel * 2 - 1 repeat_shape = [b, 1, 1, 1] xx_channel = xx_channel.unsqueeze(0).unsqueeze(0).repeat(repeat_shape) yy_channel = yy_channel.unsqueeze(0).unsqueeze(0).repeat(repeat_shape) ret = torch.cat([x, xx_channel, yy_channel], dim=1) return self.conv(ret) ``` #### 引入 ODConv 提升检测精度 另一种有效的改进方法是在 YOLOv8 中集成 ODConv 卷积操作。ODConv 能够增强目标检测的效果,有助于提高模型的整体性能指标。这种方法特别适用于那些追求更高准确度的应用场景[^2]。 #### 应用 OREPA 进一步强化网络结构 除了上述两种方式外,还可以考虑利用 OREPA 技术来加强 YOLOv8 架构中的卷积部分。具体来说就是调整配置文件 `yolov8_OREPA.yaml` 并按照给定参数设置进行训练,以此达到更好的识别能力[^3]。 ```yaml # cfg/models/v8/yolov8_OREPA.yaml snippet backbone: ... block: RepVGGBlock # Use RepVGG blocks instead of standard ones. neck: type: 'RepBiFPN' head: ... act: SiLU ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackilina_Stone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值