傅里叶分析——傅里叶级数

傅里叶分析——傅里叶级数

一些例子和定义

一些约定

实值函数通常用小写字母表示 f f f ,而复值函数通常用大写字母表示 F F F

处处连续函数

一些复值函数 f f f 在区间 [ 0 , L ] [0,L] [0,L] 上处处连续。

分段连续函数

分段连续函数在 [ 0 , L ] [0,L] [0,L] 上是有界的,并且有有限多个间断点。

黎曼可积函数

黎曼可积函数是有界的,可以有无穷多个间断点。

我们给出黎曼可积函数的定义:

如果一个实值函数 f f f 定义在 [ 0 , L ] [0,L] [0,L] 上是黎曼可积的(通常简称为可积),如果他是有界的并且对于任意的 ϵ > 0 \epsilon \gt 0 ϵ>0 ,对于 [ 0 , L ] [0,L] [0,L] 存在很多分段子区间 0 = x 0 < x 1 < … < x N − 1 = L 0 = x_0 \lt x_1 \lt \ldots \lt x_{N-1} = L 0=x0<x1<<xN1=L ,则有两个上下界和:

U = ∑ j = 1 N [ sup ⁡ x j − 1 ≤ x ≤ x j f ( x ) ] ( x j − x j − 1 ) L = ∑ j = 1 N [ inf ⁡ x j − 1 ≤ x ≤ x j f ( x ) ] ( x j − x j − 1 ) \mathcal{U} = \sum_{j=1}^N [\sup_{x_{j-1} \le x \le x_j} f(x)](x_j - x_{j-1}) \\ \mathcal{L} = \sum_{j=1}^N [\inf_{x_{j-1} \le x \le x_j} f(x)](x_j - x_{j-1}) U=j=1N[xj1xxjsupf(x)](xjxj1)L=j=1N[xj1xxjinff(x)](xjxj1)

使得 U − L < ϵ \mathcal{U} - \mathcal{L} \lt \epsilon UL<ϵ

其中算子 sup ⁡ \sup sup 为对某区间求上确界, inf ⁡ \inf inf 是下确界。

这和我们微积分的可积性的定义相同。

另外我们定义复值函数是黎曼可积的,当且仅当他的实部和虚部均可积。

两个可积函数相加、相乘同样可积。

对于无限间断点,黎曼可积是可以有无限间断点,极限观点认为这些间断点可以视为 0 0 0 ,因此对积分忽略不计。但函数必须有界。

本书如果没有特殊说明,提到的函数均为可积函数。

定义在单位圆上的函数

单位圆上的一个点可以表示为 e i θ e^{i \theta} eiθ θ \theta θ 是一个实值变量,并且对于 2 π 2 \pi 2π 的整数倍是唯一的。这很容易理解,这就是欧拉公式。

我们通过复值函数在单位圆取值建立定义在单位圆上的函数:

f ( θ ) = F ( e i θ ) f(\theta) = F(e^{i \theta}) f(θ)=F(eiθ)

此时,称 f ( θ ) f(\theta) f(θ) 为定义在单位圆上的函数。容易发现, f f f R \mathbb{R} R 上是关于 2 π 2 \pi 2π 的周期函数。同时, f f f 端点值必相等,因为 f ( 0 ) f(0) f(0) f ( 2 π ) f(2 \pi) f(2π) 对应单位圆上同一个点,必须有相同的函数值。相反任何 f ( 0 ) = f ( 2 π ) f(0) = f(2 \pi) f(0)=f(2π) [ 0 , 2 π ] [0,2 \pi] [0,2π] 的函数都可视为定义在单位圆上的函数。

我们定义在圆上连续,当且仅当 f f f [ 0 , 2 π ] [0,2 \pi] [0,2π] 上连续,并且 f ( 0 ) = f ( 2 π ) f(0) = f(2 \pi) f(0)=f(2π)

此时, F F F f f f 在单位圆上的可积性、连续性、平滑都是相关联的。

得到上述结论,我们知道下列说法是等价的:

  1. 函数 f f f 在在 R \mathbb{R} R 上是关于 2 π 2 \pi 2π 的周期函数。
  2. 任何 f ( 0 ) = f ( 2 π ) f(0) = f(2 \pi) f(0)=f(2π) [ 0 , 2 π ] [0,2 \pi] [0,2π] 的函数 f f f
  3. 定义在单位圆上的函数 f f f

定义在区间的实值函数 f f f 通常有自变量 x x x ,而我们定义在单位圆上的函数有自变量 θ \theta θ

傅里叶级数的定义

如果一个函数 f f f 在给定定长区间 L L L [ a , b ] [a,b] [a,b] b − a = L b - a = L ba=L ) 是可积的,我们定义第 n n n 个傅里叶系数为:

f ^ ( n ) = 1 L ∫ a b f ( x ) e − 2 π i n x / L d x , n ∈ Z \hat{f} (n) = \frac{1}{L} \int_a^b f(x) e^{-2 \pi inx/L} dx, n \in \mathbb{Z} f^(n)=L1abf(x)e2πinx/Ldx,nZ

傅里叶级数定义为:

∑ n = − ∞ ∞ f ^ ( n ) e 2 π i n x / L \sum_{n = -\infty}^\infty \hat{f} (n) e^{2 \pi inx/L} n=f^(n)e2πinx/L

我们有时用 a n a_n an 代表第 n n n 个傅里叶系数,因此下面的几号表示右边的级数是关于 f f f 的傅里叶级数:

f ( x ) ∼ ∑ n = − ∞ ∞ a n e 2 π i n x / L f(x) \sim \sum_{n = -\infty}^\infty a_n e^{2 \pi inx/L} f(x)n=ane2πinx/L

作为一个特例,如果 [ a , b ] [a,b] [a,b] [ − π , π ] [-\pi,\pi] [π,π] ,那么傅里叶级数就变成了:

f ^ ( n ) = a n = 1 2 π ∫ − π π f ( θ ) e − i n θ d θ , n ∈ Z \hat{f}(n) = a_n = \frac{1}{2 \pi} \int_{-\pi}^\pi f(\theta) e^{-in \theta} d\theta, n \in \mathbb{Z} f^(n)=an=2π1ππf(θ)einθdθ,nZ

同样定义在 [ 0 , 2 π ] [0,2 \pi] [0,2π] 具有相同的形式。

我们通常讨论定义在圆上函数的傅里叶系数和傅里叶级数,幸运的是,可以看出,关于 2 π 2 \pi 2π 的周期函数的积分值和我们选取的定长区间 2 π 2 \pi 2π 无关,因此定义在圆上函数的傅里叶系数是良定义的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值