Channel论文阅读笔记7-1之multipath interference by Jakes

1. 数学模型

接收机沿 x x x 轴方向以速度 v v v 运动,电磁波入射方向与接收机运动方向的夹角为 α n \alpha_n αn,则多普勒偏移为
ω n = β v cos ⁡ α n (1.1-1) \omega_n=\beta v \cos \alpha_n\tag {1.1-1} ωn=βvcosαn(1.1-1)
这里 β = 2 π / λ \beta=2\pi/\lambda β=2π/λ λ \lambda λ 是射频波长。

若传输信号垂直极化,则电场和磁场各分量表示为
. E z = E 0 ∑ n = 1 N C n cos ⁡ ( ω c t + θ n ) (1.1-2) E_z=E_0\sum_{n=1}^NC_n\cos(\omega_c t+\theta_n) \tag {1.1-2} Ez=E0n=1NCncos(ωct+θn)(1.1-2) H x = − E 0 η ∑ n = 1 N C n sin ⁡ α n cos ⁡ ( ω c t + θ n ) (1.1-3) H_x=-\frac{E_0}{\eta}\sum_{n=1}^NC_n\sin \alpha_n\cos(\omega_c t+\theta_n) \tag {1.1-3} Hx=ηE0n=1NCnsinαncos(ωct+θn)(1.1-3) H x = E 0 η ∑ n = 1 N C n cos ⁡ α n cos ⁡ ( ω c t + θ n ) (1.1-4) H_x=\frac{E_0}{\eta}\sum_{n=1}^NC_n\cos \alpha_n\cos(\omega_c t+\theta_n) \tag {1.1-4} Hx=ηE0n=1NCncosαncos(ωct+θn)(1.1-4)
这里 θ n = ω n t + ϕ n , (1.1-5) \theta_n=\omega_n t +\phi_n, \tag {1.1-5} θn=ωnt+ϕn,(1.1-5) ω c \omega_c ωc 是射频信号角频率, ϕ n ∈ [ 0 , 2 π ) \phi_n\in[0, 2\pi) ϕn[0,2π) 是初始相位, η \eta η 是自由空间波阻抗, C n C_n Cn 是归一化系数,满足 < ∑ n = 1 N C n 2 > {<\sum_{n=1}^N C_n^2>} <n=1NCn2>

E z E_z Ez 可表示为
E z = T c ( t ) cos ⁡ ω c t − T s ( t ) sin ⁡ ω c t (1.1-7) E_z=T_c(t)\cos \omega_c t - T_s(t)\sin \omega_c t \tag {1.1-7} Ez=Tc(t)cosωctTs(t)sinωct(1.1-7)
这里
T c ( t ) = E 0 ∑ n = 1 N C n cos ⁡ ( ω n t + ϕ n ) (1.1-8) T_c(t)=E_0\sum_{n=1}^NC_n\cos(\omega_n t +\phi_n) \tag {1.1-8} Tc(t)=E0n=1NCncos(ωnt+ϕn)(1.1-8) T s ( t ) = E 0 ∑ n = 1 N C n sin ⁡ ( ω n t + ϕ n ) (1.1-9) T_s(t)=E_0\sum_{n=1}^NC_n\sin(\omega_n t +\phi_n) \tag {1.1-9} Ts(t)=E0n=1NCnsin(ωnt+ϕn)(1.1-9) 是高斯随机过程,对应 E z E_z Ez 的同相 (in-phase)和正交(quadrature)分量。对于给定时间 t t t, T c T_c Tc T s T_s Ts 具有相同的均值和方差 < T c 2 > = < T s 2 > = E 0 2 = < ∣ E z ∣ 2 > (1.1-10) {<T_c^2>}={<T_s^2>}={E_0\over 2}=<|E_z|^2>\tag {1.1-10} <Tc2>=<Ts2>=2E0=<Ez2>(1.1-10) T c T_c Tc T s T_s Ts 不相关 < T c T s > = 0 (1.1-11) {<T_cT_s>=0}\tag {1.1-11} <TcTs>=0(1.1-11)

T c T_c Tc T s T_s Ts 的概率密度函数 p ( x ) = 1 2 π b e − x 2 / 2 b (1.1-12) p(x)=\frac{1}{\sqrt{2\pi b}}e^{-x^2/2b}\tag {1.1-12} p(x)=2πb 1ex2/2b(1.1-12) 这里 b = E 0 2 / 2 b=E_0^2/2 b=E02/2

E z E_z Ez 的包络
r = ( T c 2 + T s 2 ) 1 / 2 (1.1-13) r=(T_c^2+T_s^2)^{1/2}\tag {1.1-13} r=(Tc2+Ts2)1/2(1.1-13) 概率密度函数 p ( r ) = { r b e − r 2 / 2 b r ≥ 0 0 r < 0 (1.1-14) p (r)=\begin{cases}\frac{r}{b}e^{-r^2/2b}& r\ge 0\\0& r<0\end {cases} \tag {1.1-14} p(r)={brer2/2b0r0r<0(1.1-14)

2. 功率谱

接收信号的频率 f ( α ) = f c + f m cos ⁡ α (1.2-1) f(\alpha)=f_c+f_m\cos\alpha\tag {1.2-1} f(α)=fc+fmcosα(1.2-1) 这里 f m = v / λ f_m=v/\lambda fm=v/λ 是最大多普勒频率。从所有方向到达信号的总功率应该与所有频率的总功率相同,另外考虑到 f ( α ) = f ( − α ) f(\alpha)=f(-\alpha) f(α)=f(α),因此 S ( f ) ∣ d f ∣ = b [ p ( α ) G ( α ) + p ( − α ) G ( − α ) ] ∣ d α ∣ (1.2-2) S(f)|df|=b[p(\alpha)G(\alpha)+p(-\alpha)G(-\alpha)]|d\alpha| \tag {1.2-2} S(f)df=b[p(α)G(α)+p(α)G(α)]dα(1.2-2) ∣ d f ∣ = f m ∣ − sin ⁡ α d α ∣ = f m 2 − ( f − f c ) 2 ∣ d α ∣ , |df|=f_m |-\sin \alpha d\alpha|=\sqrt{f_m^2-(f-f_c)^2}|d\alpha|, df=fmsinαdα=fm2(ffc)2 dα, 可得到 S ( f ) = b f m 2 − ( f − f c ) 2 [ p ( α ) G ( α ) + p ( − α ) G ( − α ) ] (1.2-3) S(f)=\frac{b}{\sqrt{f_m^2-(f-f_c)^2}}[p(\alpha)G(\alpha)+p(-\alpha)G(-\alpha)] \tag {1.2-3} S(f)=fm2(ffc)2 b[p(α)G(α)+p(α)G(α)](1.2-3) 分别代人电场和磁场的接收增益 G ( α ) G(\alpha) G(α),即可得到相应的功率谱密度。 S H x ( f ) = sin ⁡ 2 α ⋅ S E z ( f ) = [ 1 − ( f − f c f m ) 2 ] S E z ( f ) , S H y ( f ) = cos ⁡ 2 α ⋅ S E z ( f ) = ( f − f c f m ) 2 S E z ( f ) \begin{aligned}S_{H_x}(f)&=\sin^2{\alpha}\cdot S_{E_z}(f)= \left[1-\left({f-f_c\over f_m}\right)^2\right]S_{E_z}(f), \\ S_{H_y}(f)&=\cos^2{\alpha}\cdot S_{E_z}(f)=\left({f-f_c\over f_m}\right)^2S_{E_z}(f)\end{aligned} SHx(f)SHy(f)=sin2αSEz(f)=[1(fmffc)2]SEz(f),=cos2αSEz(f)=(fmffc)2SEz(f)

电场分量磁场分量互相关
R E z H x ( τ ) = < E z ( t ) , H x ( t + τ ) > = − E 0 2 η ∑ n , m C n C m sin ⁡ α m < cos ⁡ [ ( ω c + ω n ) t + ϕ n ] cos ⁡ [ ( ω c + ω m ) ( t + τ ) + ϕ m ] = − b η ∑ n = 1 N C n 2 sin ⁡ α n cos ⁡ ( ω c + ω n ) τ = − b η ∫ − π π p ( α ) sin ⁡ α cos ⁡ ( ω c τ + ω m τ cos ⁡ α ) d α (1.2-16) \begin{aligned} R_{E_zH_x}(\tau)&=<E_z(t),H_x(t+\tau)>\\ &=-\frac{E_0^2}{\eta}\sum_{n,m}C_nC_m\sin\alpha_m<\cos[(\omega_c+ \omega_n)t+\phi_n]\cos[(\omega_c+ \omega_m)(t+\tau)+\phi_m]\\&=-\frac{b}{\eta}\sum_{n=1}^NC_n^2\sin\alpha_n\cos(\omega_c+ \omega_n)\tau\\&=-\frac{b}{\eta}\int_{-\pi}^{\pi}p(\alpha) \sin\alpha\cos(\omega_c\tau+ \omega_m\tau\cos\alpha)d\alpha\end{aligned}\tag {1.2-16} REzHx(τ)=<Ez(t),Hx(t+τ)>=ηE02n,mCnCmsinαm<cos[(ωc+ωn)t+ϕn]cos[(ωc+ωm)(t+τ)+ϕm]=ηbn=1NCn2sinαncos(ωc+ωn)τ=ηbππp(α)sinαcos(ωcτ+ωmτcosα)dα(1.2-16)
第三个等号是考虑到在结果的余炫函数中包含 ϕ n ± ϕ m \phi_n\pm\phi_m ϕn±ϕm 项,当 ϕ n ≠ ϕ m \phi_n\neq\phi_m ϕn=ϕm 时,平均后的结果为 0,第四个等号是由于 C n 2 = p ( α n ) d α C_n^2=p(\alpha_n)d\alpha Cn2=p(αn)dα。当 p ( α n ) = p ( − α n ) p(\alpha_n)=p(-\alpha_n) p(αn)=p(αn),(1.2-16)是奇函数,因此 R E z H x ( τ ) = 0 R_{E_zH_x}(\tau)=0 REzHx(τ)=0
R E z H y ( τ ) = < E z ( t ) , H y ( t + τ ) > = − b η ∫ − π π p ( α ) cos ⁡ α cos ⁡ ( ω c τ + ω m τ cos ⁡ α ) d α (1.2-20) \begin{aligned} R_{E_zH_y}(\tau)&=<E_z(t),H_y(t+\tau)>\\&=-\frac{b}{\eta}\int_{-\pi}^{\pi}p(\alpha) \cos\alpha\cos(\omega_c\tau+ \omega_m\tau\cos\alpha)d\alpha\end{aligned}\tag {1.2-20} REzHy(τ)=<Ez(t),Hy(t+τ)>=ηbππp(α)cosαcos(ωcτ+ωmτcosα)dα(1.2-20) 如果 p ( α ) = 1 2 π p(\alpha)={1\over 2\pi} p(α)=2π1 R E z H y ( τ ) = b η sin ⁡ ω c τ J 1 ( β v τ ) (1.2-21) R_{E_zH_y}(\tau)=\frac{b}{\eta}\sin\omega_c\tau J_1(\beta v\tau) \tag {1.2-21} REzHy(τ)=ηbsinωcτJ1(βvτ)(1.2-21) 因此在 τ = 0 \tau=0 τ=0 ,场的三个分量均不相关。

(1.2-21) 的简单证明:
首先给出第一类 bessel 函数的积分形式 J n = 1 π ∫ 0 π cos ⁡ ( n θ − x sin ⁡ θ ) d θ (A.1) J_n=\frac{1}{\pi}\int_0^\pi\cos(n\theta-x\sin \theta)d\theta \tag {A.1} Jn=π10πcos(nθxsinθ)dθ(A.1) J 0 = 1 π ∫ 0 π cos ⁡ ( x sin ⁡ θ ) d θ = 1 π ∫ 0 π cos ⁡ ( x cos ⁡ θ ) d θ (A.2) J_0=\frac{1}{\pi}\int_0^\pi\cos(x\sin \theta)d\theta=\frac{1}{\pi}\int_0^\pi\cos(x\cos \theta)d\theta \tag {A.2} J0=π10πcos(xsinθ)dθ=π10πcos(xcosθ)dθ(A.2) J 0 = 2 π ∫ 0 π / 2 cos ⁡ ( x sin ⁡ θ ) d θ = 2 π ∫ 0 π / 2 cos ⁡ ( x cos ⁡ θ ) d θ (A.3) J_0=\frac{2}{\pi}\int_0^{\pi/2}\cos(x\sin \theta)d\theta=\frac{2}{\pi}\int_0^{\pi/2}\cos(x\cos \theta)d\theta \tag {A.3} J0=π20π/2cos(xsinθ)dθ=π20π/2cos(xcosθ)dθ(A.3) J 1 = 1 π ∫ 0 π cos ⁡ ( θ − x sin ⁡ θ ) d θ = 1 π ∫ 0 π cos ⁡ θ sin ⁡ ( x cos ⁡ θ ) d θ (A.4) J_1=\frac{1}{\pi}\int_0^\pi\cos(\theta-x\sin \theta)d\theta=\frac{1}{\pi}\int_0^\pi\cos\theta\sin(x\cos \theta)d\theta \tag {A.4} J1=π10πcos(θxsinθ)dθ=π10πcosθsin(xcosθ)dθ(A.4)
由 (1.2-20)
R E z H y ( τ ) = − b η ∫ − π π 1 2 π cos ⁡ α cos ⁡ ( ω c τ + ω m τ cos ⁡ α ) d α = − b η π ∫ 0 π cos ⁡ α [ cos ⁡ ( ω c τ ) cos ⁡ ( ω m τ cos ⁡ α ) − sin ⁡ ( ω c τ ) sin ⁡ ( ω m τ cos ⁡ α ) ] d α \begin{aligned} R_{E_zH_y}(\tau)&=-\frac{b}{\eta}\int_{-\pi}^{\pi}{1\over 2\pi} \cos\alpha\cos(\omega_c\tau+ \omega_m\tau\cos\alpha)d\alpha\\ &=-\frac{b}{\eta\pi}\int_{0}^{\pi} \cos\alpha[\cos(\omega_c\tau)\cos( \omega_m\tau\cos\alpha)-\sin(\omega_c\tau)\sin( \omega_m\tau\cos\alpha)]d\alpha\end{aligned} REzHy(τ)=ηbππ2π1cosαcos(ωcτ+ωmτcosα)dα=ηπb0πcosα[cos(ωcτ)cos(ωmτcosα)sin(ωcτ)sin(ωmτcosα)]dα
积分的第一项 b η π ∫ 0 π cos ⁡ α cos ⁡ ( ω c τ ) cos ⁡ ( ω m τ cos ⁡ α ) d α = cos ⁡ ( ω c τ ) b η π ∫ 0 π ∑ k = 0 ∞ ( ω m τ ) 2 k cos ⁡ 2 k + 1 α ( 2 k ) ! d α = cos ⁡ ( ω c τ ) b η π ∑ k = 0 ∞ ( ω m τ ) 2 k ( 2 k ) ! 2 k ( 2 k − 2 ) ⋯ 2 ( 2 k + 1 ) ( 2 k − 1 ) ⋯ 3 ∫ 0 π cos ⁡ α d α = 0 \begin{aligned}&\frac{b}{\eta\pi}\int_{0}^{\pi} \cos\alpha\cos(\omega_c\tau)\cos( \omega_m\tau\cos\alpha)d\alpha\\&=\cos(\omega_c\tau)\frac{b}{\eta\pi}\int_{0}^{\pi}\sum_{k=0}^\infty {(\omega_m\tau)^{2k}\cos^{2k+1}\alpha\over (2k)!} d\alpha\\&=\cos(\omega_c\tau)\frac{b}{\eta\pi}\sum_{k=0}^\infty {(\omega_m\tau)^{2k}\over (2k)!}{2k(2k-2)\cdots 2\over (2k+1)(2k-1)\cdots 3} \int_{0}^{\pi}\cos\alpha d\alpha\\ &=0\end{aligned} ηπb0πcosαcos(ωcτ)cos(ωmτcosα)dα=cos(ωcτ)ηπb0πk=0(2k)!(ωmτ)2kcos2k+1αdα=cos(ωcτ)ηπbk=0(2k)!(ωmτ)2k(2k+1)(2k1)32k(2k2)20πcosαdα=0
根据 (A.4),积分的第二项为 b η π ∫ 0 π cos ⁡ α sin ⁡ ( ω c τ ) sin ⁡ ( ω m τ cos ⁡ α ) d α = b η sin ⁡ ( ω c τ ) J 1 ( ω m τ ) \frac{b}{\eta\pi}\int_{0}^{\pi}\cos\alpha\sin(\omega_c\tau)\sin( \omega_m\tau\cos\alpha)d\alpha=\frac{b}{\eta}\sin(\omega_c\tau)J_1(\omega_m\tau) ηπb0πcosαsin(ωcτ)sin(ωmτcosα)dα=ηbsin(ωcτ)J1(ωmτ)
(1.2-21) 得证。

Ref

  1. Microwave Mobile Communicatiaons, Ch1.
  2. W. B. Davenport, Jr., and W. L. Root, An Introduction to the Theory of Randum Signals and Noise, McGraw-Hill, New York, 1958.
  3. https://archive.lib.msu.edu/crcmath/math/math/e/e078.htm
  4. https://mathworld.wolfram.com/PochhammerSymbol.html
  5. https://mathworld.wolfram.com/GausssHypergeometricTheorem.html
  6. https://archive.lib.msu.edu/crcmath/math/math/g/g054.htm
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值