椭圆积分及变换关系

一种一般化的椭圆积分可以表示为以下函数:
T ( a , b ) ≡ 2 π ∫ 0 π / 2 d θ a 2 cos ⁡ 2 θ + b 2 sin ⁡ 2 θ = 2 π ∫ 0 π / 2 d θ cos ⁡ θ a 2 + b 2 tan ⁡ 2 θ (1) \begin{aligned} T(a,b)&\equiv {2\over\pi} \int^{\pi/2}_0 {d\theta\over\sqrt{a^2\cos^2\theta+b^2\sin^2\theta}}\\ &= {2\over\pi} \int^{\pi/2}_0 {d\theta\over\cos\theta\sqrt{a^2+b^2\tan^2\theta}} \end{aligned} \tag 1 T(a,b)π20π/2a2cos2θ+b2sin2θ dθ=π20π/2cosθa2+b2tan2θ dθ(1)
使 t ≡ b tan ⁡ θ , d t = b sec ⁡ 2 θ   d θ = d θ cos ⁡ θ b 2 + t 2 . t\equiv b\tan\theta,\quad dt=b\sec^2\theta\,d\theta={d\theta \over \cos \theta }\sqrt{b^2+t^2}. tbtanθ,dt=bsec2θdθ=cosθdθb2+t2 . 得到 T ( a , b ) = 2 π ∫ 0 ∞ d t ( a 2 + t 2 ) ( b 2 + t 2 ) = 1 π ∫ − ∞ ∞ d t ( a 2 + t 2 ) ( b 2 + t 2 ) . (2) \begin{aligned} T(a,b)&=&{2\over \pi} \int_0^\infty {dt\over \sqrt{(a^2+t^2)(b^2+t^2)}}\\ &=&{1\over \pi} \int_{-\infty}^\infty {dt\over \sqrt{(a^2+t^2)(b^2+t^2)}}. \end{aligned}\tag 2 T(a,b)==π20(a2+t2)(b2+t2) dtπ1(a2+t2)(b2+t2) dt.(2)
进一步进行变量代换 u ≡ 1 2 ( t − a b / t ) , d u = 1 2 ( 1 + a b / t 2 )   d t u\equiv {\textstyle{1\over 2}}(t-ab/t), \quad du={\textstyle{1\over 2}}(1+ab/t^2)\,dt u21(tab/t),du=21(1+ab/t2)dt得到
T ( a , b ) = 2 π ∫ − ∞ ∞ d u [ 4 u 2 + ( a + b ) 2 ] ( u 2 + a b ) = 1 π ∫ − ∞ ∞ d u [ u 2 + ( a + b 2 ) 2 ] ( u 2 + a b ) . (3) \begin{aligned} T(a,b)&=& {2\over \pi} \int_{-\infty}^\infty {du\over \sqrt{[4u^2+(a+b)^2](u^2+ab)}}\\ &=& {1\over \pi} \int_{-\infty}^\infty {du\over \sqrt{\left[{u^2+\left({a+b\over 2}\right)^2}\right](u^2+ab)}}. \end{aligned} \tag 3 T(a,b)==π2[4u2+(a+b)2](u2+ab) duπ1[u2+(2a+b)2](u2+ab) du.(3)
因此 T ( a , b ) = T ( 1 2 ( a + b ) , a b ) . (4) T(a,b) = T({\textstyle{1\over 2}}(a+b),\sqrt{ab}). \tag 4 T(a,b)=T(21(a+b),ab ).(4) 以算术平均和几何平均代替原变量得到相同的结果。

完全椭圆积分可以利用此算术平均和几何平均变换方法进行计算
T ( a , b ) ≡ 2 π ∫ 0 π / 2 d θ a 2 cos ⁡ 2 θ + b 2 sin ⁡ 2 θ = 2 π ∫ 0 π / 2 d θ a cos ⁡ 2 θ + ( b a ) 2 sin ⁡ 2 θ = 2 a π ∫ 0 π / 2 d θ 1 − ( 1 − b 2 a 2 ) 2 sin ⁡ 2 θ . (5) \begin{aligned} T(a,b)&\equiv& {2\over \pi} \int^{\pi/2}_0 {d\theta\over\sqrt{a^2\cos^2\theta+b^2\sin^2\theta}}\\ &=& {2\over\pi}\int^{\pi/2}_0 {d\theta \over a\sqrt{\cos ^2\theta +\left({b\over a}\right)^2 \sin^2 \theta}}\\ &=&{2\over a\pi}\int^{\pi/2}_0 {d\theta \over \sqrt{1-\left({1-{b^2\over a^2}}\right)^2\sin^2 \theta}}. \end{aligned} \tag 5 T(a,b)==π20π/2a2cos2θ+b2sin2θ dθπ20π/2acos2θ+(ab)2sin2θ dθaπ20π/21(1a2b2)2sin2θ dθ.(5)
因此
T ( a , b ) = 2 a π K ( 1 − b 2 a 2 ) (6) T(a,b)= {2\over a\pi}K\left({1-{b^2\over a^2}}\right) \tag 6 T(a,b)=aπ2K(1a2b2)(6)

K ( k ) K(k) K(k) 是第一类完全椭圆积分,令 a ≡ a 0 ≡ 1 , b ≡ b 0 ≡ k ′ , k = 1 − k ′ 2 , a\equiv a_0\equiv 1,\quad b\equiv b_0\equiv k', \quad k=\sqrt{1-k'^2}, aa01,bb0k,k=1k2 , 等式 (6) 为
2 π K ( 1 − k ′ 2   ) = 2 π K ( k ) , {2\over \pi}K(\sqrt{1-k'^2}\,) = {2\over \pi}K(k), π2K(1k2 )=π2K(k),
定义
K ′ ( k ) ≡ K ( 1 − k 2   ) = K ( k ′ ) . (7) K'(k)\equiv K(\sqrt{1-k^2}\,)=K(k'). \tag 7 K(k)K(1k2 )=K(k).(7)
应用变量算术平均和几何平均进行变量代换
1 a K ( 1 − b 2 a 2   ) = 2 a + b K ( 1 − 4 a b ( a + b ) 2   ) = 2 a + b K ( a 2 + b 2 − 2 a b ( a + b ) 2   ) = 2 a + b K ( a − b a + b ) (8) \begin{aligned} {1\over a}K\left({\sqrt{1-{b^2\over a^2}}\,}\right)&=& {2\over a+b}K\left({\sqrt{1-{4ab\over (a+b)^2}}\,}\right)\\ &=& {2\over a+b} K\left({\sqrt{a^2+b^2-2ab\over(a+b)^2}\,}\right)\\ &=& {2\over a+b}K\left({a-b\over a+b}\right) \end{aligned} \tag 8 a1K(1a2b2 )===a+b2K(1(a+b)24ab )a+b2K((a+b)2a2+b22ab )a+b2K(a+bab)(8)
得到
K ( 1 − b 2 a 2   ) = 2 1 + b a K ( 1 − b a 1 + b a ) . (9) K\left({\sqrt{1-{b^2\over a^2}}\,}\right)= {2\over 1+{b\over a}}K\left({1-{b\over a}\over 1+{b\over a}}\right). \tag 9 K(1a2b2 )=1+ab2K(1+ab1ab).(9)
k ′ ≡ b a , k ≡ 1 − k ′ 2 , k'\equiv {b\over a}, \quad k\equiv \sqrt{1-k'^2}, kab,k1k2 , 得到
K ( k ) = 2 1 + k ′ K ( 1 − k ′ 1 + k ′ ) . (10) K(k)={2\over 1+k'} K\left({1-k'\over 1+k'}\right). \tag {10} K(k)=1+k2K(1+k1k).(10)

l ≡ ( 1 − k ′ ) / ( 1 + k ′ ) , l\equiv (1-k')/(1+k'), l(1k)/(1+k), k ′ = 1 − l 1 + l , k = 1 − k ′ 2 = 2 l 1 + l , k'={1-l\over 1+l}, \quad k=\sqrt{1-k'^2}= {2\sqrt{l}\over 1+l}, k=1+l1l,k=1k2 =1+l2l , 因此 K ( k ) = 1 k + 1 K ( 2 k 1 + k ) . (11) K(k)={1\over k+1} K\left({2\sqrt{k}\over 1+k}\right). \tag {11} K(k)=k+11K(1+k2k ).(11) 类似地可以得到
E ( k ) = 1 + k 2 E ( 2 k 1 + k ) + k ′ 2 2 K ( k ) (12) E(k)={1+k\over 2}E\left({2\sqrt{k}\over 1+k}\right)+{k'^2\over 2}K(k) \tag {12} E(k)=21+kE(1+k2k )+2k2K(k)(12) E ( k ) = ( 1 + k ′ ) E ( 1 − k ′ 1 + k ′ ) − k ′ K ( k ) . (13) E(k)=(1+k')E\left({1-k'\over 1+k'}\right)-k'K(k). \tag {13} E(k)=(1+k)E(1+k1k)kK(k).(13) 这里 E ( k ) E(k) E(k) 为第二类完全椭圆积分。
K ′ ( k ) = K ( k ′ ) = 2 1 + k K ( 1 − k 1 + k ) = 2 1 + k K ′ ( 1 − ( 1 − k 1 + k ) 2   ) = 2 1 + k K ′ ( 2 k 1 + k ) (14) \begin{aligned} K'(k)&=&K(k') = {2\over 1+k} K\left({1-k\over 1+k}\right)\\ &=& {2\over 1+k}K'\left({\sqrt{1-\left({1-k\over 1+k}\right)^2}\,}\right)\\ &=& {2\over 1+k}K'\left({2\sqrt{k}\over 1+k}\right) \end{aligned} \tag {14} K(k)===K(k)=1+k2K(1+k1k)1+k2K1(1+k1k)2 1+k2K(1+k2k )(14)
K ′ ( k ) = 1 1 + k ′ K ( 2 k ′ 1 + k ′ ) = 1 1 + k ′ K ′ ( 1 − k ′ 1 + k ′ ) , (15) K'(k)={1\over 1+k'} K\left({2\sqrt{k'}\over 1+k'}\right)= {1\over 1+k'} K'\left({1-k'\over 1+k'}\right), \tag {15} K(k)=1+k1K(1+k2k )=1+k1K(1+k1k),(15)
E ′ ( k ) = ( 1 + k ) E ′ ( 2 k 1 + k ) − k K ′ ( k ) (16) E'(k)=(1+k)E'\left({2\sqrt{k}\over 1+k}\right)-kK'(k) \tag {16} E(k)=(1+k)E(1+k2k )kK(k)(16)
E ′ ( k ) = ( 1 + k ′ 2 ) E ′ ( 1 − k ′ 1 + k ′ ) + k 2 2 K ′ ( k ) . (17) E'(k)=\left({1+k'\over 2}\right)E'\left({1-k'\over 1+k'}\right)+{k^2\over 2}K'(k).\tag {17} E(k)=(21+k)E(1+k1k)+2k2K(k).(17)
K ′ ( k ) K ( k ) = 2 K ′ ( 2 k   1 + k ) K ( 2 k   1 + k ) = 1 2 K ′ ( 1 − k ′ 1 + k ′ ) K ( 1 − k ′ 1 + k ′ ) (18) {K'(k)\over K(k)}=2 {K'\left({2\sqrt{k}\,\over 1+k}\right)\over K\left({2\sqrt{k}\,\over 1+k}\right)} = {1\over 2} {K'\left({1-k'\over 1+k'}\right)\over K\left({1-k'\over 1+k'}\right)} \tag {18} K(k)K(k)=2K(1+k2k )K(1+k2k )=21K(1+k1k)K(1+k1k)(18)

Ref.
https://archive.lib.msu.edu/crcmath/math/math/e/e099.htm

<think>嗯,用户问的是椭圆面积公式,我需要先回忆一下相关知识。椭圆的标准方程是$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中a和b分别是长半轴和短半轴。那面积公式应该是πab对吧?不过得确认一下这个公式的来源,不能直接背出来,得让用户理解推导过程。 首先,可能需要用积分的方法来推导。因为圆的面积是πr²,而椭圆可以看作是圆被拉伸后的图形,拉伸比例是b/a,所以面积可能会变成πa²乘以b/a,也就是πab。不过这个方法是不是严谨呢?可能需要更详细的积分步骤。 另外,用户可能对参数方程比较熟悉。椭圆的参数方程是x = a cosθ,y = b sinθ,θ从0到2π。利用参数方程的积分公式,面积可以表示为积分从0到2π的y dx,也就是积分y乘以dx/dθ dθ。代入的话,dx/dθ是 -a sinθ,所以面积是∫(0到2π) b sinθ * (-a sinθ) dθ,绝对值之后变成ab ∫0到2π sin²θ dθ。这个积分的结果是πab,对吧?因为积分sin²θ在0到2π的积分结果是π,所以最后确实是πab。 或者也可以用极坐标变换,不过可能稍微复杂。不过用户可能更熟悉直角坐标系下的积分方法。另外,还可以通过压缩圆的方法来解释,把圆x² + y² = a²沿着y轴方向压缩b/a倍,面积就会乘以压缩的比例,也就是πa² * (b/a) = πab。 需要检查是否有其他方法,比如用格林公式或者二重积分。比如,用二重积分椭圆区域积分1 dxdy,通过变量替换x = a r cosθ,y = b r sinθ,雅可比行列式是ab r,所以积分变成∫0到2π ∫0到1 ab r dr dθ,结果为ab * π,对吧?是的,这样也能得到πab。 不过用户可能需要的是清晰的步骤,所以应该分点说明不同的推导方法。但可能用户只需要基本的解释,所以不需要太复杂。要确保步骤正确,没有错误,比如积分计算是否正确,变量替换是否合理。 另外,是否需要提及椭圆的周长公式?可能不需要,用户只问面积。但可以指出椭圆面积和圆面积的关系,当a=b时,公式变成πa²,符合圆的情况,这样用户更容易理解。 总结一下,应该分步骤解释推导过程,比如积分法、参数方程法或者几何变换法,然后给出公式,并验证特殊情况。这样用户就能逐步理解公式的来源,而不是仅仅记住结果。</think>椭圆的面积公式是数学中的一个重要结论,其推导过程可以通过几何变换积分方法完成。以下是逐步解释: --- ### **1. 椭圆的标准方程** 椭圆的标准方程为: $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$ 其中: - $a$ 是椭圆的长半轴, - $b$ 是椭圆的短半轴。 --- ### **2. 面积公式的直观推导** 椭圆可以看作是通过对圆进行**均匀压缩**得到的图形。具体步骤如下: 1. **圆的面积**:半径为 $a$ 的圆面积为 $S_{\text{圆}} = \pi a^2$。 2. **沿 $y$ 轴压缩**:将圆沿 $y$ 轴方向压缩比例为 $\frac{b}{a}$,此时每个点的 $y$ 坐标变为 $y' = \frac{b}{a} y$。 3. **面积变化**:压缩后图形的面积变为原面积的 $\frac{b}{a}$ 倍,即: $$S_{\text{椭圆}} = \pi a^2 \cdot \frac{b}{a} = \pi a b.$$ --- ### **3. 通过积分严格推导** 利用积分法计算椭圆面积: 1. **解方程求 $y$**:从标准方程解出 $y$: $$y = \pm b \sqrt{1 - \frac{x^2}{a^2}}.$$ 2. **积分求面积**:对上半部分积分后乘以 2: $$ S = 2 \int_{-a}^{a} b \sqrt{1 - \frac{x^2}{a^2}} \, dx. $$ 3. **变量代换**:令 $x = a \sin\theta$,则 $dx = a \cos\theta \, d\theta$,积分变为: $$ S = 2b \int_{-\pi/2}^{\pi/2} \sqrt{1 - \sin^2\theta} \cdot a \cos\theta \, d\theta = 2ab \int_{-\pi/2}^{\pi/2} \cos^2\theta \, d\theta. $$ 4. **利用三角恒等式**:$\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$,积分结果为: $$ S = 2ab \cdot \frac{\pi}{2} = \pi a b. $$ --- ### **4. 参数方程法** 椭圆的参数方程为: $$ \begin{cases} x = a \cos\theta, \\ y = b \sin\theta, \end{cases} \quad \theta \in [0, 2\pi). $$ 利用参数方程的面积公式: $$ S = \frac{1}{2} \int_{0}^{2\pi} \left( x \frac{dy}{d\theta} - y \frac{dx}{d\theta} \right) d\theta. $$ 代入 $dx/d\theta = -a \sin\theta$ 和 $dy/d\theta = b \cos\theta$,计算得: $$ S = \frac{1}{2} \int_{0}^{2\pi} (a \cos\theta \cdot b \cos\theta + b \sin\theta \cdot a \sin\theta) d\theta = \frac{ab}{2} \int_{0}^{2\pi} d\theta = \pi a b. $$ --- ### **5. 公式总结** 椭圆面积公式为: $$ S = \pi a b. $$ - **特例验证**:当 $a = b$ 时,椭圆退化为圆,面积公式变为 $\pi a^2$,与圆面积一致。 --- ### **6. 应用示例** 已知椭圆长轴长为 $2a = 10$,短轴长为 $2b = 6$,则面积: $$ S = \pi \cdot 5 \cdot 3 = 15\pi. $$ 通过以上方法,可以清晰理解椭圆面积公式的来源和应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值