一种一般化的椭圆积分可以表示为以下函数:
T
(
a
,
b
)
≡
2
π
∫
0
π
/
2
d
θ
a
2
cos
2
θ
+
b
2
sin
2
θ
=
2
π
∫
0
π
/
2
d
θ
cos
θ
a
2
+
b
2
tan
2
θ
(1)
\begin{aligned} T(a,b)&\equiv {2\over\pi} \int^{\pi/2}_0 {d\theta\over\sqrt{a^2\cos^2\theta+b^2\sin^2\theta}}\\ &= {2\over\pi} \int^{\pi/2}_0 {d\theta\over\cos\theta\sqrt{a^2+b^2\tan^2\theta}} \end{aligned} \tag 1
T(a,b)≡π2∫0π/2a2cos2θ+b2sin2θdθ=π2∫0π/2cosθa2+b2tan2θdθ(1)
使
t
≡
b
tan
θ
,
d
t
=
b
sec
2
θ
d
θ
=
d
θ
cos
θ
b
2
+
t
2
.
t\equiv b\tan\theta,\quad dt=b\sec^2\theta\,d\theta={d\theta \over \cos \theta }\sqrt{b^2+t^2}.
t≡btanθ,dt=bsec2θdθ=cosθdθb2+t2. 得到
T
(
a
,
b
)
=
2
π
∫
0
∞
d
t
(
a
2
+
t
2
)
(
b
2
+
t
2
)
=
1
π
∫
−
∞
∞
d
t
(
a
2
+
t
2
)
(
b
2
+
t
2
)
.
(2)
\begin{aligned} T(a,b)&=&{2\over \pi} \int_0^\infty {dt\over \sqrt{(a^2+t^2)(b^2+t^2)}}\\ &=&{1\over \pi} \int_{-\infty}^\infty {dt\over \sqrt{(a^2+t^2)(b^2+t^2)}}. \end{aligned}\tag 2
T(a,b)==π2∫0∞(a2+t2)(b2+t2)dtπ1∫−∞∞(a2+t2)(b2+t2)dt.(2)
进一步进行变量代换
u
≡
1
2
(
t
−
a
b
/
t
)
,
d
u
=
1
2
(
1
+
a
b
/
t
2
)
d
t
u\equiv {\textstyle{1\over 2}}(t-ab/t), \quad du={\textstyle{1\over 2}}(1+ab/t^2)\,dt
u≡21(t−ab/t),du=21(1+ab/t2)dt得到
T
(
a
,
b
)
=
2
π
∫
−
∞
∞
d
u
[
4
u
2
+
(
a
+
b
)
2
]
(
u
2
+
a
b
)
=
1
π
∫
−
∞
∞
d
u
[
u
2
+
(
a
+
b
2
)
2
]
(
u
2
+
a
b
)
.
(3)
\begin{aligned} T(a,b)&=& {2\over \pi} \int_{-\infty}^\infty {du\over \sqrt{[4u^2+(a+b)^2](u^2+ab)}}\\ &=& {1\over \pi} \int_{-\infty}^\infty {du\over \sqrt{\left[{u^2+\left({a+b\over 2}\right)^2}\right](u^2+ab)}}. \end{aligned} \tag 3
T(a,b)==π2∫−∞∞[4u2+(a+b)2](u2+ab)duπ1∫−∞∞[u2+(2a+b)2](u2+ab)du.(3)
因此
T
(
a
,
b
)
=
T
(
1
2
(
a
+
b
)
,
a
b
)
.
(4)
T(a,b) = T({\textstyle{1\over 2}}(a+b),\sqrt{ab}). \tag 4
T(a,b)=T(21(a+b),ab).(4) 以算术平均和几何平均代替原变量得到相同的结果。
完全椭圆积分可以利用此算术平均和几何平均变换方法进行计算
T
(
a
,
b
)
≡
2
π
∫
0
π
/
2
d
θ
a
2
cos
2
θ
+
b
2
sin
2
θ
=
2
π
∫
0
π
/
2
d
θ
a
cos
2
θ
+
(
b
a
)
2
sin
2
θ
=
2
a
π
∫
0
π
/
2
d
θ
1
−
(
1
−
b
2
a
2
)
2
sin
2
θ
.
(5)
\begin{aligned} T(a,b)&\equiv& {2\over \pi} \int^{\pi/2}_0 {d\theta\over\sqrt{a^2\cos^2\theta+b^2\sin^2\theta}}\\ &=& {2\over\pi}\int^{\pi/2}_0 {d\theta \over a\sqrt{\cos ^2\theta +\left({b\over a}\right)^2 \sin^2 \theta}}\\ &=&{2\over a\pi}\int^{\pi/2}_0 {d\theta \over \sqrt{1-\left({1-{b^2\over a^2}}\right)^2\sin^2 \theta}}. \end{aligned} \tag 5
T(a,b)≡==π2∫0π/2a2cos2θ+b2sin2θdθπ2∫0π/2acos2θ+(ab)2sin2θdθaπ2∫0π/21−(1−a2b2)2sin2θdθ.(5)
因此
T
(
a
,
b
)
=
2
a
π
K
(
1
−
b
2
a
2
)
(6)
T(a,b)= {2\over a\pi}K\left({1-{b^2\over a^2}}\right) \tag 6
T(a,b)=aπ2K(1−a2b2)(6)
K
(
k
)
K(k)
K(k) 是第一类完全椭圆积分,令
a
≡
a
0
≡
1
,
b
≡
b
0
≡
k
′
,
k
=
1
−
k
′
2
,
a\equiv a_0\equiv 1,\quad b\equiv b_0\equiv k', \quad k=\sqrt{1-k'^2},
a≡a0≡1,b≡b0≡k′,k=1−k′2, 等式 (6) 为
2
π
K
(
1
−
k
′
2
)
=
2
π
K
(
k
)
,
{2\over \pi}K(\sqrt{1-k'^2}\,) = {2\over \pi}K(k),
π2K(1−k′2)=π2K(k),
定义
K
′
(
k
)
≡
K
(
1
−
k
2
)
=
K
(
k
′
)
.
(7)
K'(k)\equiv K(\sqrt{1-k^2}\,)=K(k'). \tag 7
K′(k)≡K(1−k2)=K(k′).(7)
应用变量算术平均和几何平均进行变量代换
1
a
K
(
1
−
b
2
a
2
)
=
2
a
+
b
K
(
1
−
4
a
b
(
a
+
b
)
2
)
=
2
a
+
b
K
(
a
2
+
b
2
−
2
a
b
(
a
+
b
)
2
)
=
2
a
+
b
K
(
a
−
b
a
+
b
)
(8)
\begin{aligned} {1\over a}K\left({\sqrt{1-{b^2\over a^2}}\,}\right)&=& {2\over a+b}K\left({\sqrt{1-{4ab\over (a+b)^2}}\,}\right)\\ &=& {2\over a+b} K\left({\sqrt{a^2+b^2-2ab\over(a+b)^2}\,}\right)\\ &=& {2\over a+b}K\left({a-b\over a+b}\right) \end{aligned} \tag 8
a1K(1−a2b2)===a+b2K(1−(a+b)24ab)a+b2K((a+b)2a2+b2−2ab)a+b2K(a+ba−b)(8)
得到
K
(
1
−
b
2
a
2
)
=
2
1
+
b
a
K
(
1
−
b
a
1
+
b
a
)
.
(9)
K\left({\sqrt{1-{b^2\over a^2}}\,}\right)= {2\over 1+{b\over a}}K\left({1-{b\over a}\over 1+{b\over a}}\right). \tag 9
K(1−a2b2)=1+ab2K(1+ab1−ab).(9) 令
k
′
≡
b
a
,
k
≡
1
−
k
′
2
,
k'\equiv {b\over a}, \quad k\equiv \sqrt{1-k'^2},
k′≡ab,k≡1−k′2, 得到
K
(
k
)
=
2
1
+
k
′
K
(
1
−
k
′
1
+
k
′
)
.
(10)
K(k)={2\over 1+k'} K\left({1-k'\over 1+k'}\right). \tag {10}
K(k)=1+k′2K(1+k′1−k′).(10)
令
l
≡
(
1
−
k
′
)
/
(
1
+
k
′
)
,
l\equiv (1-k')/(1+k'),
l≡(1−k′)/(1+k′), 得
k
′
=
1
−
l
1
+
l
,
k
=
1
−
k
′
2
=
2
l
1
+
l
,
k'={1-l\over 1+l}, \quad k=\sqrt{1-k'^2}= {2\sqrt{l}\over 1+l},
k′=1+l1−l,k=1−k′2=1+l2l, 因此
K
(
k
)
=
1
k
+
1
K
(
2
k
1
+
k
)
.
(11)
K(k)={1\over k+1} K\left({2\sqrt{k}\over 1+k}\right). \tag {11}
K(k)=k+11K(1+k2k).(11) 类似地可以得到
E
(
k
)
=
1
+
k
2
E
(
2
k
1
+
k
)
+
k
′
2
2
K
(
k
)
(12)
E(k)={1+k\over 2}E\left({2\sqrt{k}\over 1+k}\right)+{k'^2\over 2}K(k) \tag {12}
E(k)=21+kE(1+k2k)+2k′2K(k)(12)
E
(
k
)
=
(
1
+
k
′
)
E
(
1
−
k
′
1
+
k
′
)
−
k
′
K
(
k
)
.
(13)
E(k)=(1+k')E\left({1-k'\over 1+k'}\right)-k'K(k). \tag {13}
E(k)=(1+k′)E(1+k′1−k′)−k′K(k).(13) 这里
E
(
k
)
E(k)
E(k) 为第二类完全椭圆积分。
K
′
(
k
)
=
K
(
k
′
)
=
2
1
+
k
K
(
1
−
k
1
+
k
)
=
2
1
+
k
K
′
(
1
−
(
1
−
k
1
+
k
)
2
)
=
2
1
+
k
K
′
(
2
k
1
+
k
)
(14)
\begin{aligned} K'(k)&=&K(k') = {2\over 1+k} K\left({1-k\over 1+k}\right)\\ &=& {2\over 1+k}K'\left({\sqrt{1-\left({1-k\over 1+k}\right)^2}\,}\right)\\ &=& {2\over 1+k}K'\left({2\sqrt{k}\over 1+k}\right) \end{aligned} \tag {14}
K′(k)===K(k′)=1+k2K(1+k1−k)1+k2K′⎝⎛1−(1+k1−k)2⎠⎞1+k2K′(1+k2k)(14)
K
′
(
k
)
=
1
1
+
k
′
K
(
2
k
′
1
+
k
′
)
=
1
1
+
k
′
K
′
(
1
−
k
′
1
+
k
′
)
,
(15)
K'(k)={1\over 1+k'} K\left({2\sqrt{k'}\over 1+k'}\right)= {1\over 1+k'} K'\left({1-k'\over 1+k'}\right), \tag {15}
K′(k)=1+k′1K(1+k′2k′)=1+k′1K′(1+k′1−k′),(15)
E
′
(
k
)
=
(
1
+
k
)
E
′
(
2
k
1
+
k
)
−
k
K
′
(
k
)
(16)
E'(k)=(1+k)E'\left({2\sqrt{k}\over 1+k}\right)-kK'(k) \tag {16}
E′(k)=(1+k)E′(1+k2k)−kK′(k)(16)
E
′
(
k
)
=
(
1
+
k
′
2
)
E
′
(
1
−
k
′
1
+
k
′
)
+
k
2
2
K
′
(
k
)
.
(17)
E'(k)=\left({1+k'\over 2}\right)E'\left({1-k'\over 1+k'}\right)+{k^2\over 2}K'(k).\tag {17}
E′(k)=(21+k′)E′(1+k′1−k′)+2k2K′(k).(17)
K
′
(
k
)
K
(
k
)
=
2
K
′
(
2
k
1
+
k
)
K
(
2
k
1
+
k
)
=
1
2
K
′
(
1
−
k
′
1
+
k
′
)
K
(
1
−
k
′
1
+
k
′
)
(18)
{K'(k)\over K(k)}=2 {K'\left({2\sqrt{k}\,\over 1+k}\right)\over K\left({2\sqrt{k}\,\over 1+k}\right)} = {1\over 2} {K'\left({1-k'\over 1+k'}\right)\over K\left({1-k'\over 1+k'}\right)} \tag {18}
K(k)K′(k)=2K(1+k2k)K′(1+k2k)=21K(1+k′1−k′)K′(1+k′1−k′)(18)
Ref.
https://archive.lib.msu.edu/crcmath/math/math/e/e099.htm