Channel论文阅读笔记7-2之multipath interference by Jakes

信道各分量的自相关和功率谱

< T c 1 T c 2 > = < T s 1 T s 2 > = g ( τ ) <T_{c1}T_{c2}>=<T_{s1}T_{s2}>=g(\tau) <Tc1Tc2>=<Ts1Ts2>=g(τ) < T c 1 T s 2 > = − < T s 1 T c 2 > = h ( τ ) (1.3-1) <T_{c1}T_{s2}>=-<T_{s1}T_{c2}>=h(\tau) \tag {1.3-1} <Tc1Ts2>=<Ts1Tc2>=h(τ)(1.3-1)
g ( τ ) = ∫ f c − f m f c + f m S i ( f ) cos ⁡ ( 2 π ( f − f c ) τ ) d f (1.3-2) g(\tau)=\int_{f_c-f_m}^{f_c+f_m} S_i(f)\cos (2\pi(f-f_c)\tau) df \tag {1.3-2} g(τ)=fcfmfc+fmSi(f)cos(2π(ffc)τ)df(1.3-2) h ( τ ) = ∫ f c − f m f c + f m S i ( f ) sin ⁡ ( 2 π ( f − f c ) τ ) d f (1.3-3) h(\tau)=\int_{f_c-f_m}^{f_c+f_m} S_i(f)\sin (2\pi(f-f_c)\tau) df \tag {1.3-3} h(τ)=fcfmfc+fmSi(f)sin(2π(ffc)τ)df(1.3-3)
(1) 对于电场分量 g ( τ ) = b 0 J 0 ( ω m τ ) g(\tau)=b_0J_0(\omega_m\tau) g(τ)=b0J0(ωmτ)
简单证明:代人电场的功率谱,设 f − f c = f m cos ⁡ α f-f_c=f_m \cos\alpha ffc=fmcosα g ( τ ) = 3 b 2 π ∫ 0 π cos ⁡ ( ω m τ cos ⁡ α ) d α = b 0 J 0 ( ω m τ ) . g(\tau)={3b\over 2\pi }\int_0^\pi \cos(\omega_m\tau\cos\alpha)d\alpha=b_0J_0(\omega_m\tau). g(τ)=2π3b0πcos(ωmτcosα)dα=b0J0(ωmτ).
(2) 对于磁场 x x x 分量 g ( τ ) = b 0 H ( J 0 ( ω m τ ) + J 2 ( ω m τ ) ) g(\tau)=b_{0H}(J_0(\omega_m\tau)+J_2(\omega_m\tau)) g(τ)=b0H(J0(ωmτ)+J2(ωmτ))
简单证明:代人磁场 x x x 分量的功率谱,设 f − f c = f m cos ⁡ α f-f_c=f_m \cos\alpha ffc=fmcosα g ( τ ) = 3 b 2 π ∫ 0 π sin ⁡ 2 α cos ⁡ ( ω m τ cos ⁡ α ) d α = 3 b 4 π ∫ 0 π [ 1 + ( 1 − 2 cos ⁡ 2 α ) ] cos ⁡ ( ω m τ cos ⁡ α ) d α = b 0 H ( J 0 ( ω m τ ) + J 2 ( ω m τ ) ) . \begin{aligned}g(\tau)&={3b\over 2\pi }\int_0^\pi \sin^2\alpha\cos(\omega_m\tau\cos\alpha)d\alpha\\&={3b\over 4\pi }\int_0^\pi [1+(1-2\cos^2\alpha)]\cos(\omega_m\tau\cos\alpha)d\alpha\\ &=b_{0H}(J_0(\omega_m\tau)+J_2(\omega_m\tau))\end{aligned}. g(τ)=2π3b0πsin2αcos(ωmτcosα)dα=4π3b0π[1+(12cos2α)]cos(ωmτcosα)dα=b0H(J0(ωmτ)+J2(ωmτ)). 最后等号是由于
∫ 0 π ( 1 − 2 cos ⁡ 2 α ) cos ⁡ ( ω m τ cos ⁡ α ) d α = ∑ k = 0 ∞ ( − 1 ) k [ ( ω m τ ) 2 k ( 2 k − 1 ) ! ! ( 2 k ) ! ( 2 k ) ! ! − 2 ( ω m τ ) 2 k ( 2 k + 1 ) ! ! ( 2 k ) ! ( 2 k + 2 ) ! ! ] = ∑ k = 1 ∞ ( − 1 ) k ( ω m τ / 2 ) 2 k [ − 1 ( k − 1 ) ! ( k + 1 ) ! ] = ∑ k = 0 ∞ ( − 1 ) k ( ω m τ / 2 ) 2 k + 2 [ 1 ( k ) ! ( k + 2 ) ! ] = J 2 ( ω m τ ) ) \begin{aligned}&\int_0^\pi (1-2\cos^2\alpha)\cos(\omega_m\tau\cos\alpha)d\alpha\\ &=\sum_{k=0}^\infty(-1)^k\left[{(\omega_m\tau)^{2k}(2k-1)!!\over (2k)!(2k)!!}-{2(\omega_m\tau)^{2k}(2k+1)!!\over (2k)!(2k+2)!!}\right]\\ &=\sum_{k=1}^\infty(-1)^k(\omega_m\tau/2)^{2k}\left[{-1\over (k-1)!(k+1)!}\right]\\ &=\sum_{k=0}^\infty(-1)^k(\omega_m\tau/2)^{2k+2}\left[{1\over (k)!(k+2)!}\right]=J_2(\omega_m\tau))\end{aligned} 0π(12cos2α)cos(ωmτcosα)dα=k=0(1)k[(2k)!(2k)!!(ωmτ)2k(2k1)!!(2k)!(2k+2)!!2(ωmτ)2k(2k+1)!!]=k=1(1)k(ωmτ/2)2k[(k1)!(k+1)!1]=k=0(1)k(ωmτ/2)2k+2[(k)!(k+2)!1]=J2(ωmτ))
(3) 对于磁场 y y y 分量 g ( τ ) = b 0 H ( J 0 ( ω m τ ) − J 2 ( ω m τ ) ) g(\tau)=b_{0H}(J_0(\omega_m\tau)-J_2(\omega_m\tau)) g(τ)=b0H(J0(ωmτ)J2(ωmτ))
简单证明:代人磁场 x x x 分量的功率谱,设 f − f c = f m cos ⁡ α f-f_c=f_m \cos\alpha ffc=fmcosα g ( τ ) = 3 b 2 π ∫ 0 π cos ⁡ 2 α cos ⁡ ( ω m τ cos ⁡ α ) d α = 3 b 4 π ∫ 0 π [ 1 − ( 1 − 2 cos ⁡ 2 α ) ] cos ⁡ ( ω m τ cos ⁡ α ) d α = b 0 H ( J 0 ( ω m τ ) − J 2 ( ω m τ ) ) . \begin{aligned}g(\tau)&={3b\over 2\pi }\int_0^\pi \cos^2\alpha\cos(\omega_m\tau\cos\alpha)d\alpha\\&={3b\over 4\pi }\int_0^\pi [1-(1-2\cos^2\alpha)]\cos(\omega_m\tau\cos\alpha)d\alpha\\ &=b_{0H}(J_0(\omega_m\tau)-J_2(\omega_m\tau))\end{aligned}. g(τ)=2π3b0πcos2αcos(ωmτcosα)dα=4π3b0π[1(12cos2α)]cos(ωmτcosα)dα=b0H(J0(ωmτ)J2(ωmτ)).

信号的矩

b n = ( 2 π ) n ∫ f c − f m f c + f m S i ( f ) ( f − f c ) n d f (1.3-4) b_n=(2\pi)^n\int_{f_c-f_m}^{f_c+f_m} S_i(f)(f-f_c)^n df \tag {1.3-4} bn=(2π)nfcfmfc+fmSi(f)(ffc)ndf(1.3-4)
对于电场分量
b n = b 0 ω m n 1 ⋅ 3 ⋯ ( n − 1 ) 2 ⋅ 4 ⋯ n , b 0 = 1.5 b = 3 E 0 2 4 (1.3-6) b_n=b_0 \omega_m^n{1\cdot 3\cdots (n-1)\over 2\cdot 4 \cdots n }, \quad b_0=1.5b={3E_0^2\over 4}\tag {1.3-6} bn=b0ωmn24n13(n1),b0=1.5b=43E02(1.3-6)
证明:对于电场分量,由(1.2-11) S i ( f ) = 3 b ω m [ 1 − ( f − f c f m ) 2 ] − 1 / 2 S_i(f)={3b\over \omega_m}\left[1-\left({f-fc\over f_m}\right)^2\right]^{-1/2} Si(f)=ωm3b[1(fmffc)2]1/2
b n = ( 2 π ) n ∫ f c − f m f c + f m 3 b ω m [ 1 − ( f − f c f m ) 2 ] − 1 / 2 ( f − f c ) n d f b_n=(2\pi)^n\int_{f_c-f_m}^{f_c+f_m} {3b\over \omega_m}\left[1-\left({f-fc\over f_m}\right)^2\right]^{-1/2}(f-f_c)^n df bn=(2π)nfcfmfc+fmωm3b[1(fmffc)2]1/2(ffc)ndf f − f c = f m cos ⁡ α f-f_c=f_m \cos\alpha ffc=fmcosα,
b n = ω m n ∫ − 1 1 3 b ω m sin ⁡ − 1 α cos ⁡ n α f m   d ( cos ⁡ α ) = 3 b ω m n 2 π ∫ π 0 − cos ⁡ n α d α = 3 b ω m n 2 1 ⋅ 3 ⋯ ( n − 1 ) 2 ⋅ 4 ⋯ n b_n=\omega_m^n\int_{-1}^1 {3b\over \omega_m}\sin^{-1}\alpha\cos^n\alpha f_m\ d (\cos\alpha) \\ ={3b \omega_m^n\over 2\pi }\int_{\pi}^0 -\cos^n\alpha d \alpha={3b \omega_m^n\over 2 }{1\cdot 3\cdots (n-1)\over 2\cdot 4 \cdots n } bn=ωmn11ωm3bsin1αcosnαfm d(cosα)=2π3bωmnπ0cosnαdα=23bωmn24n13(n1) 证毕。

包络自相关和功率谱

窄带高斯过程包络的自相关为
R r ( τ ) = π 2 b 0 F [ − 1 2 , − 1 2 ; 1 ; ρ 2 ( τ ) ] , (1.3-12) R_r(\tau)={\pi\over 2}b_0F[-{1\over2},-{1\over2};1; \rho^2(\tau)],\tag {1.3-12} Rr(τ)=2πb0F[21,21;1;ρ2(τ)],(1.3-12) 其中 ρ 2 ( τ ) ] = 1 b 0 2 [ g 2 ( τ ) + h 2 ( τ ) ] (1.3-13) \rho^2(\tau)]={1\over b_0^2}[g^2(\tau)+h^2(\tau)] \tag {1.3-13} ρ2(τ)]=b021[g2(τ)+h2(τ)](1.3-13)
证明:
x c 1 = x c ( t ) ,   x s 1 = x s ( t ) ,   x c 2 = x c ( t + τ ) ,   x s 2 = x s ( t + τ ) x_{c1}=x_c(t),\ x_{s1}=x_s(t),\ x_{c2}=x_c(t+\tau),\ x_{s2}=x_s(t+\tau) xc1=xc(t), xs1=xs(t), xc2=xc(t+τ), xs2=xs(t+τ), 随机变量 x c 1 ,   x s 1 ,   x c 2 ,   x s 2 x_{c1},\ x_{s1},\ x_{c2},\ x_{s2} xc1, xs1, xc2, xs2 的相关阵为 [2]
Λ = [ σ x 2 0 R c ( τ ) R c s ( τ ) 0 σ x 2 − R c s ( τ ) R c ( τ ) R c ( τ ) − R c s ( τ ) σ x 2 0 R c s ( τ ) R c ( τ ) 0 σ x 2 ] (B.1) \Lambda=\begin{bmatrix}\sigma_x^2 & 0& R_c(\tau)& R_{cs}(\tau)\\ 0&\sigma_x^2 &-R_{cs}(\tau)& R_c(\tau)\\ R_c(\tau)& -R_{cs}(\tau) &\sigma_x^2&0\\ R_{cs}(\tau)& R_c(\tau)&0& \sigma_x^2\end{bmatrix} \tag {B.1} Λ=σx20Rc(τ)Rcs(τ)0σx2Rcs(τ)Rc(τ)Rc(τ)Rcs(τ)σx20Rcs(τ)Rc(τ)0σx2(B.1)
行列式
∣ Λ ∣ = [ σ x 4 − R c 2 ( τ ) − R c s 2 ( τ ) ] 2 (B.2) |\Lambda|=[\sigma_x^4-R_c^2(\tau)-R_{cs}^2(\tau)]^2 \tag {B.2} Λ=[σx4Rc2(τ)Rcs2(τ)]2(B.2)
相关阵的逆
Λ − 1 = ∣ Λ ∣ − 1 / 2 [ σ x 2 0 − R c ( τ ) − R c s ( τ ) 0 σ x 2 R c s ( τ ) − R c ( τ ) − R c ( τ ) R c s ( τ ) σ x 2 0 − R c s ( τ ) − R c ( τ ) 0 σ x 2 ] (B.3) \Lambda^{-1}=|\Lambda|^{-1/2}\begin{bmatrix}\sigma_x^2 & 0& -R_c(\tau)& -R_{cs}(\tau)\\ 0&\sigma_x^2 &R_{cs}(\tau)& -R_c(\tau)\\ -R_c(\tau)& R_{cs}(\tau) &\sigma_x^2&0\\ -R_{cs}(\tau)& -R_c(\tau)&0& \sigma_x^2\end{bmatrix} \tag {B.3} Λ1=Λ1/2σx20Rc(τ)Rcs(τ)0σx2Rcs(τ)Rc(τ)Rc(τ)Rcs(τ)σx20Rcs(τ)Rc(τ)0σx2(B.3)
功率密度函数
p ( x c 1 , x s 1 , x c 2 , x s 2 ) = 1 4 π 2 ∣ Λ ∣ 1 / 2 ⋅ exp ⁡ [ − 1 2 ( x c 1 , x s 1 , x c 2 , x s 2 ) Λ − 1 ( x c 1 , x s 1 , x c 2 , x s 2 ) T ] (B.4) p(x_{c1},x_{s1},x_{c2},x_{s2})={1\over 4\pi^2|\Lambda|^{1/2}}\\\cdot\exp\left[-{1\over 2}(x_{c1},x_{s1},x_{c2},x_{s2})\Lambda^{-1}(x_{c1},x_{s1},x_{c2},x_{s2})^T\right] \tag {B.4} p(xc1,xs1,xc2,xs2)=4π2Λ1/21exp[21(xc1,xs1,xc2,xs2)Λ1(xc1,xs1,xc2,xs2)T](B.4) d x c 1 d x s 1 d x c 2 d x s 2 = r 1 r 2 d r 1 d r 2 d ϕ 1 d ϕ 2 (B.5) dx_{c1}dx_{s1}dx_{c2}dx_{s2}=r_1r_2dr_1dr_2d\phi_1d\phi_2 \tag {B.5} dxc1dxs1dxc2dxs2=r1r2dr1dr2dϕ1dϕ2(B.5) 可得
p ( r 1 , θ 1 , r 2 , θ 2 ) = r 1 r 2 4 π 2 ∣ Λ ∣ 1 / 2 ⋅ exp ⁡ [ − σ x 2 ( r 1 2 + r 2 2 ) − 2 R c ( τ ) r 1 r 2 cos ⁡ ( ϕ 2 − ϕ 1 ) − 2 R c s ( τ ) r 1 r 2 sin ⁡ ( ϕ 2 − ϕ 1 ) 2 ∣ Λ ∣ 1 / 2 ] (B.6) p(r_1,\theta_1,r_2,\theta_2)={r_1r_2\over 4\pi^2|\Lambda|^{1/2}}\\ \cdot\exp\left[-{\sigma_x^2(r_1^2+r_2^2)-2R_c(\tau)r_1r_2\cos(\phi_2-\phi_1)-2R_{cs}(\tau)r_1r_2\sin(\phi_2-\phi_1)\over 2|\Lambda|^{1/2}}\right] \tag {B.6} p(r1,θ1,r2,θ2)=4π2Λ1/2r1r2exp[2Λ1/2σx2(r12+r22)2Rc(τ)r1r2cos(ϕ2ϕ1)2Rcs(τ)r1r2sin(ϕ2ϕ1)](B.6)
α = ϕ 2 − ϕ 1 − tan ⁡ − 1 [ R c s ( τ ) / R c ( τ ) ] \alpha=\phi_2-\phi_1-\tan^{-1}[R_{cs}(\tau)/R_{c}(\tau)] α=ϕ2ϕ1tan1[Rcs(τ)/Rc(τ)]
1 4 π 2 ∫ 0 2 π d ϕ 1 ∫ 0 2 π d ϕ 2 exp ⁡ { − r 1 r 2 ∣ Λ ∣ 1 / 2 [ R c ( τ ) cos ⁡ ( ϕ 2 − ϕ 1 ) + R c s ( τ ) sin ⁡ ( ϕ 2 − ϕ 1 ) ] } = 1 2 π ∫ 0 2 π d ϕ 1 1 2 π ∫ 0 2 π exp ⁡ { − r 1 r 2 [ R c 2 ( τ ) + R c s 2 ( τ ) ] 1 / 2 ∣ Λ ∣ 1 / 2 cos ⁡ α } d α = I 0 { r 1 r 2 [ R c 2 ( τ ) + R c s 2 ( τ ) ] 1 / 2 ∣ Λ ∣ 1 / 2 } (B.7) \begin{aligned}{1\over 4\pi^2}&\int_0^{2\pi}d\phi_1\int_0^{2\pi}d\phi_2\exp\left\{-{r_1r_2\over |\Lambda|^{1/2}}[R_c(\tau)\cos(\phi_2-\phi_1)+R_{cs}(\tau)\sin(\phi_2-\phi_1)]\right\}\\ &={1\over 2\pi}\int_0^{2\pi}d\phi_1{1\over 2\pi}\int_0^{2\pi}\exp\left\{-{r_1r_2[R_c^2(\tau)+R_{cs}^2(\tau)]^{1/2}\over |\Lambda|^{1/2}}\cos\alpha\right\}d\alpha\\ &=I_0\left\{{r_1r_2[R_c^2(\tau)+R_{cs}^2(\tau)]^{1/2}\over |\Lambda|^{1/2}}\right\} \end{aligned} \tag {B.7} 4π2102πdϕ102πdϕ2exp{Λ1/2r1r2[Rc(τ)cos(ϕ2ϕ1)+Rcs(τ)sin(ϕ2ϕ1)]}=2π102πdϕ12π102πexp{Λ1/2r1r2[Rc2(τ)+Rcs2(τ)]1/2cosα}dα=I0{Λ1/2r1r2[Rc2(τ)+Rcs2(τ)]1/2}(B.7)
R r ( τ ) = < r 1 , r 2 > = ∫ 0 ∞ ∫ 0 ∞ r 1 2 r 2 2 ∣ Λ ∣ 1 / 2 I 0 { r 1 r 2 [ R c 2 ( τ ) + R c s 2 ( τ ) ] 1 / 2 ∣ Λ ∣ 1 / 2 } exp ⁡ [ − σ x 2 ( r 1 2 + r 2 2 ) 2 ∣ Λ ∣ 1 / 2 ] d r 1 d r 2 = ∫ 0 ∞ ∫ 0 ∞ r 1 2 r 2 2 ∣ Λ ∣ 1 / 2 ∑ k = 0 ∞ { r 1 r 2 [ R c 2 ( τ ) + R c s 2 ( τ ) ] 1 / 2 2 ∣ Λ ∣ 1 / 2 } 2 k 1 k ! k ! exp ⁡ [ − σ x 2 ( r 1 2 + r 2 2 ) 2 ∣ Λ ∣ 1 / 2 ] d r 1 d r 2 = ∑ k = 0 ∞ [ R c 2 ( τ ) + R c s 2 ( τ ) σ x 2 ] k { ∫ 0 ∞ r 1 2 ∣ Λ ∣ 1 / 4 r 1 2 k σ x 2 k 2 k ∣ Λ ∣ k / 2 k ! exp ⁡ [ − σ x 2 r 1 2 2 ∣ Λ ∣ 1 / 2 ] d r 1 } 2 = ∑ k = 0 ∞ ρ 2 k ( τ ) { ∫ 0 ∞ 2 ∣ Λ ∣ 1 / 2 σ x 3 ( σ x 2 r 1 2 ) ( k + 1 / 2 ) ( 2 ∣ Λ ∣ 1 / 2 ) ( k + 1 / 2 ) k ! exp ⁡ [ − σ x 2 r 1 2 2 ∣ Λ ∣ 1 / 2 ] d σ x 2 r 1 2 2 ∣ Λ ∣ 1 / 2 } 2 = ∑ k = 0 ∞ ρ 2 k ( τ ) 2 ∣ Λ ∣ σ x 6 Γ 2 ( k + 3 / 2 ) k ! k ! (B.8) \begin{aligned}R_r(\tau)&=<r_1,r_2>\\&=\int_0^\infty\int_0^\infty{r_1^2r_2^2\over |\Lambda|^{1/2}} I_0\left\{{r_1r_2[R_c^2(\tau)+R_{cs}^2(\tau)]^{1/2}\over |\Lambda|^{1/2}}\right\}\exp\left[-{\sigma_x^2(r_1^2+r_2^2)\over 2|\Lambda|^{1/2}}\right]dr_1dr_2\\ &=\int_0^\infty\int_0^\infty{r_1^2r_2^2\over |\Lambda|^{1/2}} \sum_{k=0}^{\infty} \left\{{r_1r_2[R_c^2(\tau)+R_{cs}^2(\tau)]^{1/2}\over 2|\Lambda|^{1/2}}\right\}^{2k}{1\over k!k!}\exp\left[-{\sigma_x^2(r_1^2+r_2^2)\over 2|\Lambda|^{1/2}}\right]dr_1dr_2\\ &=\sum_{k=0}^{\infty}\left[{R_c^2(\tau)+R_{cs}^2(\tau)\over \sigma_x^2}\right]^k \left\{\int_{0}^{\infty}{r_1^2\over |\Lambda|^{1/4}}{r_1^{2k}\sigma_x^{2k}\over 2^k |\Lambda|^{k/2}k!}\exp\left[-{\sigma_x^2r_1^2\over 2|\Lambda|^{1/2}}\right]dr_1\right\}^2\\ &=\sum_{k=0}^{\infty}\rho^{2k}(\tau) \left\{\int_{0}^{\infty}{\sqrt 2 |\Lambda|^{1/2}\over \sigma_x^3}{(\sigma_x^2r_1^2)^{(k+1/2)}\over (2 |\Lambda|^{1/2})^{(k+1/2)}k!}\exp\left[-{\sigma_x^2r_1^2\over 2|\Lambda|^{1/2}}\right]d{\sigma_x^2r_1^2\over 2|\Lambda|^{1/2}}\right\}^2\\ &=\sum_{k=0}^{\infty}\rho^{2k}(\tau){ 2 |\Lambda|\over \sigma_x^6}{\Gamma^2(k+3/2)\over k!k!}\tag {B.8}\end{aligned} Rr(τ)=<r1,r2>=00Λ1/2r12r22I0{Λ1/2r1r2[Rc2(τ)+Rcs2(τ)]1/2}exp[2Λ1/2σx2(r12+r22)]dr1dr2=00Λ1/2r12r22k=0{2Λ1/2r1r2[Rc2(τ)+Rcs2(τ)]1/2}2kk!k!1exp[2Λ1/2σx2(r12+r22)]dr1dr2=k=0[σx2Rc2(τ)+Rcs2(τ)]k{0Λ1/4r122kΛk/2k!r12kσx2kexp[2Λ1/2σx2r12]dr1}2=k=0ρ2k(τ){0σx32 Λ1/2(2Λ1/2)(k+1/2)k!(σx2r12)(k+1/2)exp[2Λ1/2σx2r12]d2Λ1/2σx2r12}2=k=0ρ2k(τ)σx62Λk!k!Γ2(k+3/2)(B.8)
注意到
∑ k = 0 ∞ ρ 2 k ( τ ) 2 ∣ Λ ∣ σ x 6 Γ 2 ( k + 3 / 2 ) k ! k ! = σ x 2 π 2 ∑ k = 0 ∞ ρ 2 k ( τ ) ( 1 − ρ 2 ( τ ) ) 2 [ ( 2 k + 1 ) ! ! ( 2 k ) ! ! ] 2 (B.9) \sum_{k=0}^{\infty}\rho^{2k}(\tau){ 2 |\Lambda|\over \sigma_x^6}{\Gamma^2(k+3/2)\over k!k!}={\sigma_x^2\pi\over 2}\sum_{k=0}^{\infty}\rho^{2k}(\tau){ (1-\rho^2(\tau))^2}\left[(2k+1)!!\over (2k)!!\right]^2\tag {B.9} k=0ρ2k(τ)σx62Λk!k!Γ2(k+3/2)=2σx2πk=0ρ2k(τ)(1ρ2(τ))2[(2k)!!(2k+1)!!]2(B.9)
∑ k = 0 ∞ ρ 2 k ( τ ) ρ 2 l ( τ ) [ ( 2 k + 1 ) ! ! ( 2 k ) ! ! ] 2 = ∑ k = l ∞ ρ 2 k ( τ ) [ ( 2 k − 2 l + 1 ) ! ! ( 2 k − 2 l ) ! ! ] 2 (B.10) \sum_{k=0}^{\infty}\rho^{2k}(\tau){ \rho^{2l}(\tau)}\left[(2k+1)!!\over (2k)!!\right]^2=\sum_{k=l}^{\infty}\rho^{2k}(\tau)\left[(2k-2l+1)!!\over (2k-2l)!!\right]^2\tag {B.10} k=0ρ2k(τ)ρ2l(τ)[(2k)!!(2k+1)!!]2=k=lρ2k(τ)[(2k2l)!!(2k2l+1)!!]2(B.10)
∑ k = 0 ∞ [ ( 2 k + 1 ) ! ! ( 2 k ) ! ! ] 2 − 2 ∑ k = 1 ∞ [ ( 2 k − 1 ) ! ! ( 2 k − 2 ) ! ! ] 2 + ∑ k = 2 ∞ [ ( 2 k − 3 ) ! ! ( 2 k − 4 ) ! ! ] 2 = ∑ k = 0 ∞ [ ( 2 k − 3 ) ! ! ( 2 k ) ! ! ] 2 (B.11) \sum_{k=0}^{\infty}\left[(2k+1)!!\over (2k)!!\right]^2-2\sum_{k=1}^{\infty}\left[(2k-1)!!\over (2k-2)!!\right]^2+\sum_{k=2}^{\infty}\left[(2k-3)!!\over (2k-4)!!\right]^2=\sum_{k=0}^{\infty}\left[(2k-3)!!\over (2k)!!\right]^2 \tag {B.11} k=0[(2k)!!(2k+1)!!]22k=1[(2k2)!!(2k1)!!]2+k=2[(2k4)!!(2k3)!!]2=k=0[(2k)!!(2k3)!!]2(B.11)
因此
( B . 8 ) = σ x 2 π 2 ∑ k = 0 ∞ ρ 2 k ( τ ) [ ( 2 k − 3 ) ! ! ( 2 k ) ! ! ] 2 = π b 0 2 2 F 1 ( − 1 2 , − 1 2 ; 1 ; ρ 2 ( τ ) ) (B.12) (B.8)={\sigma_x^2\pi\over 2}\sum_{k=0}^{\infty}\rho^{2k}(\tau)\left[(2k-3)!!\over (2k)!!\right]^2={\pi b_0\over 2}{}_2F_1\left(-{1\over 2},-{1\over 2};1;\rho^{2}(\tau)\right)\tag {B.12} (B.8)=2σx2πk=0ρ2k(τ)[(2k)!!(2k3)!!]2=2πb02F1(21,21;1;ρ2(τ))(B.12)证毕。

根据 Gauss’s Hypergeometric Theorem [5,6]
2 F 1 ( a , b ; c ; 1 ) = ( c − b ) − a ( c ) − a = Γ ( c ) Γ ( c − a − b ) Γ ( c − a ) Γ ( c − b ) (B.13) {}_2F_1(a,b;c;1)={(c-b)_{-a}\over (c)_{-a}}={\Gamma(c)\Gamma(c-a-b)\over\Gamma(c-a)\Gamma(c-b)} \tag {B.13} 2F1(a,b;c;1)=(c)a(cb)a=Γ(ca)Γ(cb)Γ(c)Γ(cab)(B.13)

2 F 1 ( − 1 2 , − 1 2 ; 1 ; 1 ) = Γ ( 2 ) Γ ( 3 / 2 ) Γ ( 3 / 2 ) = 4 π (B.14) {}_2F_1\left(-{1\over 2},-{1\over 2};1;1\right)={\Gamma(2)\over\Gamma(3/2)\Gamma(3/2)}={4\over \pi} \tag {B.14} 2F1(21,21;1;1)=Γ(3/2)Γ(3/2)Γ(2)=π4(B.14)
τ = 0 \tau=0 τ=0 ρ ( 0 ) = 1 \rho(0)=1 ρ(0)=1
R r ( 0 ) = π b 0 2 2 F 1 ( − 1 2 , − 1 2 ; 1 ; 1 ) = 2 b 0 (1.3.14) R_r(0)={\pi b_0\over 2}{}_2F_1\left(-{1\over 2},-{1\over 2};1;1\right)=2b_0 \tag {1.3.14} Rr(0)=2πb02F1(21,21;1;1)=2b0(1.3.14)
展开(1.3-12)的超几何函数
R r ( τ ) = π b 0 2 ( 1 + ρ 2 ( τ ) 4 + ρ 4 ( τ ) 64 + ⋯   ) (1.3.15) R_r(\tau)={\pi b_0\over 2}\left(1+{\rho^{2}(\tau)\over 4}+{\rho^{4}(\tau)\over 64}+\cdots \right)\tag {1.3.15} Rr(τ)=2πb0(1+4ρ2(τ)+64ρ4(τ)+)(1.3.15)
保留前两项 R r ( τ ) ≐ π b 0 2 ( 1 + ρ 2 ( τ ) 4 ) (1.3.16) R_r(\tau)\doteq {\pi b_0\over 2}\left(1+{\rho^{2}(\tau)\over 4} \right)\tag {1.3.16} Rr(τ)2πb0(1+4ρ2(τ))(1.3.16)
对于 τ = 0 \tau=0 τ=0 R r ( 0 ) ≐ 5 π b 0 8 = 1.964 b 0 , (1.3.17) R_r(0)\doteq {5\pi b_0\over 8}=1.964 b_0, \tag {1.3.17} Rr(0)85πb0=1.964b0,(1.3.17) 误差仅 1.8%。

包络的功率谱密度可以表示为
S e ( f ) = π b 0 2 ∫ − ∞ ∞ ( 1 + ρ 2 ( τ ) 4 ) e − i ω τ d τ = π b 0 2 δ ( f ) + π 8 b 0 ∫ − ∞ ∞ ( g 2 ( τ ) + h 2 ( τ ) ) e − i ω τ d τ (1.3.19) \begin{aligned}S_e(f)&= {\pi b_0\over 2}\int_{-\infty}^\infty\left(1+{\rho^{2}(\tau)\over 4} \right)e^{-i\omega \tau}d\tau \\ &={\pi b_0\over 2}\delta(f)+{\pi \over 8b_0}\int_{-\infty}^\infty\left(g^{2}(\tau)+{h^{2}(\tau)} \right)e^{-i\omega \tau}d\tau \end{aligned}\tag {1.3.19} Se(f)=2πb0(1+4ρ2(τ))eiωτdτ=2πb0δ(f)+8b0π(g2(τ)+h2(τ))eiωτdτ(1.3.19)

Ref

  1. Microwave Mobile Communicatiaons, Ch1.
  2. W. B. Davenport, Jr., and W. L. Root, An Introduction to the Theory of Randum Signals and Noise, McGraw-Hill, New York, 1958.
  3. https://archive.lib.msu.edu/crcmath/math/math/e/e078.htm
  4. https://mathworld.wolfram.com/PochhammerSymbol.html
  5. https://mathworld.wolfram.com/GausssHypergeometricTheorem.html
  6. https://archive.lib.msu.edu/crcmath/math/math/g/g054.htm
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值