提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
模型交叉验证
交叉验证(Cross-Validation)是机器学习中常用的一种模型评估方法,用于评估模型的性能和泛化能力。它的主要目的是在有限的数据集上,尽可能充分地利用数据来评估模型,避免过拟合或欠拟合,并提供对模型性能的更稳健的估计。
交叉验证的基本思想是将原始的训练数据划分为多个子集(也称为折叠),然后将模型训练和验证进行多次循环。在每一次循环中,使用其中一个子集作为验证集,其他子集作为训练集。这样可以多次计算模型的性能指标,并取这些指标的平均值作为最终的模型性能评估结果。
实现代码
# 导入库
import pandas as pd
import numpy as np
# 读取训练集和测试集文件
train_data = pd.read_csv('E:/算法/1_AI夏令营第三期/打卡/1_baseline/train.csv')
test_data = pd.read_csv('E:/算法/1_AI夏令营第三期/打卡/1_baseline/test.csv')
# 提取udmap特征,人工进行onehot
def udmap_onethot(d):
v = np.zeros(9)
if d == 'unknown':
return v
d = eval(d)
for i in range(1, 10):
if 'key' + str(i) in d:
v[i-1] = d['key' + str(i)]
return v
train_udmap_df = pd.DataFrame(np.vstack(train_data['udmap'].apply(udmap_onethot)))
test_udmap_df = pd.DataFrame(np.vstack(test_data['udmap'].apply(udmap_onethot)))
train_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
test_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
# 对'udmap'列的'unknown'值进行处理,填充到新列'udmap_isunknown'中
train_data['udmap_isunknown'] = (train_data['udmap'] == 'unknown').astype(int)
test_data['udmap_isunknown'] = (test_data['udmap'] == 'unknown').astype(int)
# 拼接
train_data = pd.concat([train_data, train_udmap_df], axis=1)
test_data = pd.concat([test_data, test_udmap_df], axis=1)
# 提取eid的频次特征
train_data['eid_freq'] = train_data['eid'].map(train_data['eid'].value_counts())
test_data['eid_freq'] = test_data['eid'].map(train_data['eid'].value_counts())
# 提取eid的标签特征
train_data['eid_mean'] = train_data['eid'].map(train_data.groupby('eid')['target'].mean())
test_data['eid_mean'] = test_data['eid'].map(train_data.groupby('eid')['target'].mean())
# 提取时间戳
train_data['common_ts'] = pd.to_datetime(train_data['common_ts'], unit='ms')
test_data['common_ts'] = pd.to_datetime(test_data['common_ts'], unit='ms')
train_data['common_ts_hour'] = train_data['common_ts'].dt.hour
test_data['common_ts_hour'] = test_data['common_ts'].dt.hour
测试模型
# 导入模型
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier
# 导入交叉验证和评价指标
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import classification_report
# 训练并验证SGDClassifier
pred = cross_val_predict(
SGDClassifier(max_iter=10),
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred, digits=3))
# 训练并验证DecisionTreeClassifier
pred = cross_val_predict(
DecisionTreeClassifier(),
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred, digits=3))
# 训练并验证MultinomialNB
pred = cross_val_predict(
MultinomialNB(),
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred, digits=3))
# 训练并验证RandomForestClassifier
pred = cross_val_predict(
RandomForestClassifier(n_estimators=5),
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred, digits=3))
从macro F1的角度来看,Decision Tree Classifier 的值为0.771效果最好。
其中:
precision(精确率):指的是模型预测为正类别(1)的样本中,真正为正类别的比例。
recall(召回率):指的是真正为正类别的样本中,模型成功预测为正类别的比例。
f1-score(F1分数):综合考虑了精确率和召回率,是一个用于衡量模型性能的综合指标。它是精确率和召回率的调和平均值。
support(支持数):每个类别的样本数量。
accuracy(准确率):指的是模型正确预测的样本比例,包括正类别和负类别。
macro avg(宏平均):是对所有类别的指标(precision、recall、f1-score)取平均值,不考虑各类别样本的不平衡。
weighted avg(加权平均):是对所有类别的指标进行加权平均,考虑各类别样本的不平衡。
# 使用Decision Tree Classifier对模型进行训练
clf = DecisionTreeClassifier()
X = train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1)
y = train_data['target']
clf.fit(X, y)
# 绘制特征重要性柱状图
import matplotlib.pyplot as plt
# 获取特征重要性分数
feature_importances = clf.feature_importances_
# 创建特征重要性 DataFrame
importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': feature_importances})
# 按重要性从大到小排序
importance_df = importance_df.sort_values(by='Importance', ascending=False)
plt.figure(figsize=(30, 6))
plt.bar(importance_df['Feature'], importance_df['Importance'])
总结
通过对模型交叉验证,我们可以选择出在数据集中表现较好的模型,适用于模型的初步选择,后续可以对已选择模型进行进一步调参。