hold out其实就是比如说把随机80%数据作为训练集,把剩下的20%数据作为测试集。
K Cross-validation就是随机把数据分为K等份,然后使用K-1份作为训练集,把剩下的一份作为测试集。
这样,你需要训练模型K次,测试K次。
K Cross-validation通常能够更好的测试出模型效果,因为他使得每一个训练样本都被测试过一次,训练过K-1次。但是因为需要训练K次,测试K次,所以速度是较慢的。当你的数据集足够大的时候,hold out通常是被认为可以接受的。
当你时间紧迫,或者只是想得到一个base line的时候,可以使用hold out。