Hold-out和Cross-validation

本文对比了Holdout和K-Cross验证两种常见的模型验证方法。Holdout方法通过将数据集划分为训练集和测试集来快速评估模型,适用于时间紧迫或仅需基线结果的场景。K-Cross验证则通过将数据集分为K个等份,轮流用K-1份数据进行训练,剩余一份用于测试,从而获得更全面的模型性能评估,但计算成本较高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hold out其实就是比如说把随机80%数据作为训练集,把剩下的20%数据作为测试集。

K Cross-validation就是随机把数据分为K等份,然后使用K-1份作为训练集,把剩下的一份作为测试集。

这样,你需要训练模型K次,测试K次。

 

K Cross-validation通常能够更好的测试出模型效果,因为他使得每一个训练样本都被测试过一次,训练过K-1次。但是因为需要训练K次,测试K次,所以速度是较慢的。当你的数据集足够大的时候,hold out通常是被认为可以接受的。

 

当你时间紧迫,或者只是想得到一个base line的时候,可以使用hold out。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值