Affine Function And Linear Function

原文链接为:http://www3.nccu.edu.tw/~joe/IO2010S/lecturenotes3_somemath.pdf

版权为原作者所有。以下是文章内容。




### 仿射函数的定义及其数学表达 仿射函数是一种特殊的映射形式,在线性代数和高等数学中有广泛应用。它通常可以被描述为一种由线性变换加上平移构成的映射。具体来说,如果存在一个向量 \( b \in \mathbb{R}^n \) 和一个线性变换 \( A : \mathbb{R}^m \to \mathbb{R}^n \),则对于任意输入向量 \( x \in \mathbb{R}^m \),仿射函数的形式化定义如下: \[ f(x) = Ax + b \] 其中,\( f(x) \) 是输出向量,\( A \) 是一个矩阵代表线性部分,而 \( b \) 则是一个固定向量用于实现平移操作[^1]。 这种结构表明,仿射函数本质上是由两部分组成:一部分是对输入向量进行线性变换(通过矩阵乘法),另一部分则是对结果施加固定的偏置项(即平移矢量)。因此,当 \( b=0 \) 时,该函数退化成纯线性变换;反之,则成为更广泛的仿射变换[^4]。 #### 应用场景举例 在实际应用中,仿射函数广泛存在于多个领域之中。例如,在计算机图形学里,为了实现物体的位置移动或者视角调整等功能,经常需要用到基于仿射变换的操作来处理三维模型的数据点集合。另外,在机器学习算法设计过程中,尤其是神经网络架构构建阶段,激活层之前的全连接层实际上就是执行了一次标准意义上的仿射转换过程,其作用在于将前一层节点特征重新组合并传递给后续非线性单元进一步加工[^3]。 ```python import numpy as np def affine_transform(A, b, x): """ Perform an affine transformation on vector x. Parameters: A (numpy.ndarray): The linear transformation matrix of shape (n,m). b (numpy.ndarray): The translation vector of length n. x (numpy.ndarray): Input vector to be transformed of length m. Returns: numpy.ndarray: Resultant vector after applying the affine function. """ return np.dot(A, x) + b # Example usage with a simple case where dimensions are small enough for clarity A_example = np.array([[1, 2], [3, 4]]) b_example = np.array([5, 6]) x_input = np.array([7, 8]) result_vector = affine_transform(A_example, b_example, x_input) print(result_vector) # Output will depend upon input values provided above ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值