组合数学 转动群

组合数学中比较困难的波利亚定理应用最大的障碍是不理解所要解决的立体形状的具体信息。下文详细列举了所有常见的形状和其详尽的信息。

 

 

正四面体:阶12,顶点4个,面4个,棱6条,均为等边三角形

转动群顶点个数
不动(1)4(1)4(1)61
顶点-面心 ±120度(1)(3)(1)(3)(3)28
棱心-棱心 180度(2)2(2)2(1)2(2)23

 

正六面体:阶24,顶点8个,面6个,棱12条,均为正方形

转动群顶点个数
不动(1)8(1)6(1)121
面心-面心, ±90度(4)2(1)2(4)(4)36
面心-面心,180度(2)4(1)2(2)2(2)63
棱心-棱心,180度(2)4(2)3(1)2(2)56
空间对角线±120度(3)2(1)2(3)2(3)48

 

正八面体:阶24,顶点6个,面8个,棱12条,均为等边三角形

转动群顶点个数
不动(1)6(1)8(1)121
顶点-顶点 ±90度(1)2(4)(4)2(4)36
顶点-顶点 180度(1)2(2)2(2)4(2)63
棱心-棱心 180度(2)3(2)4(1)2(2)56
面心-面心 ±120度(3)2(3)2(1)2(3)48

 

正十二面体:阶60 ,顶点20个,面12个,棱30条,均为正五边形

转动群顶点个数
不动(1)20(1)12(1)301
面心-面心±72,±144度(5)4(1)2(5)2(5)624
棱心-棱心180度(2)10(2)6(1)2(2)1415
顶点-顶点±120度(1)2(3)6(3)4(3)1020

 

正二十面体:阶60 ,顶点12个,面20个,棱30条,均为等边三角形

转动群顶点个数
不动(1)12(1)20(1)301
顶点-顶点±72,±144度(1)2(5)2(5)4(5)624
棱心-棱心180度(2)6(2)10(1)2(2)1415
面心-面心±120度(3)4(1)2(3)6(3)1020

 

足球:阶60,顶点60个,面32个,棱数90条,20个正六边形,12个正五边形

转动群顶点个数
不动(1)60(1)32(1)901
五边形面心-五边形面心±72,±144度(5)12(1)2(5)6(5)1824
六边形面心—六边形面心±120度(3)20(1)2(3)10(3)3020
正六边形棱中-棱180度(这种棱有30条)(2)30(2)16(1)2(2)4415


类足球:阶24,顶点24个,面14个,棱数36条,8个正六边形,6个正方形(就是那种把正八面体的每个角切掉等大的一块得出的形状)

转动群顶点个数
不动(1)24(1)14(1)361
正方形面心-正方形面心±90度(4)6(1)2(4)3(4)96
正方形面心-正方形面心180度(2)12(1)2(2)6(2)183
六边形面心—六边形面心±120度(3)8(1)2(3)4(3)128
正六边形棱中-棱180度(这种棱有12条)(2)12(2)7(1)2(2)176

 

Python可以用于处理魔方的置换(Permutation Group)推导,这是因为魔方的变化本质上就是对底层6种颜色块(如红、黄、蓝等)的不同排列组合。通过数学中的置换理论,我们可以构建一个模型来描述魔方的各种转动步骤,比如F(前)、B(后)、U(上)、D(下)、L(左)和R(右)。 在Python中,一种常见的做法是使用类(Classes)和函数(Functions)来模拟魔方的各个面和转动。首先,你可以创建一个表示基础块的位置矩阵,然后定义各种旋转操作的方法,每个方法都会更新这个矩阵。例如: ```python class CubeFace: def __init__(self): self.faces = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] class RubikCube: def __init__(self): self.faces = {face: CubeFace() for face in 'FRUBDL'} def rotate(self, direction, layer): # 实现具体的旋转逻辑,比如 F=front, L=left face ... def generate_move_sequence(move): # 这里会使用置换算法推导出一系列基础转动来完成给定的复杂移动 sequence = [] while move != "I": # I代表还原状态 sequence.append(move) move = apply_sequence_to_cube(move, cube) return sequence # 简化的旋转函数应用示例 def apply_sequence_to_cube(move, cube): face, action = move[0], move[1:] cube.rotate(face, action) return cube # 使用 cube = RubikCube() move = "R U R' U'" sequence = generate_move_sequence(move) ``` 在这个例子中,`generate_move_sequence`函数会根据给定的魔方转动序列生成一系列基本旋转的操作,使得最终的魔方达到目标状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值