组合数学中比较困难的波利亚定理应用最大的障碍是不理解所要解决的立体形状的具体信息。下文详细列举了所有常见的形状和其详尽的信息。
正四面体:阶12,顶点4个,面4个,棱6条,均为等边三角形
转动群 | 顶点 | 面 | 棱 | 个数 |
不动 | (1)4 | (1)4 | (1)6 | 1 |
顶点-面心 ±120度 | (1)(3) | (1)(3) | (3)2 | 8 |
棱心-棱心 180度 | (2)2 | (2)2 | (1)2(2)2 | 3 |
正六面体:阶24,顶点8个,面6个,棱12条,均为正方形
转动群 | 顶点 | 面 | 棱 | 个数 |
不动 | (1)8 | (1)6 | (1)12 | 1 |
面心-面心, ±90度 | (4)2 | (1)2(4) | (4)3 | 6 |
面心-面心,180度 | (2)4 | (1)2(2)2 | (2)6 | 3 |
棱心-棱心,180度 | (2)4 | (2)3 | (1)2(2)5 | 6 |
空间对角线±120度 | (3)2(1)2 | (3)2 | (3)4 | 8 |
正八面体:阶24,顶点6个,面8个,棱12条,均为等边三角形
转动群 | 顶点 | 面 | 棱 | 个数 |
不动 | (1)6 | (1)8 | (1)12 | 1 |
顶点-顶点 ±90度 | (1)2(4) | (4)2 | (4)3 | 6 |
顶点-顶点 180度 | (1)2(2)2 | (2)4 | (2)6 | 3 |
棱心-棱心 180度 | (2)3 | (2)4 | (1)2(2)5 | 6 |
面心-面心 ±120度 | (3)2 | (3)2(1)2 | (3)4 | 8 |
正十二面体:阶60 ,顶点20个,面12个,棱30条,均为正五边形
转动群 | 顶点 | 面 | 棱 | 个数 |
不动 | (1)20 | (1)12 | (1)30 | 1 |
面心-面心±72,±144度 | (5)4 | (1)2(5)2 | (5)6 | 24 |
棱心-棱心180度 | (2)10 | (2)6 | (1)2(2)14 | 15 |
顶点-顶点±120度 | (1)2(3)6 | (3)4 | (3)10 | 20 |
正二十面体:阶60 ,顶点12个,面20个,棱30条,均为等边三角形
转动群 | 顶点 | 面 | 棱 | 个数 |
不动 | (1)12 | (1)20 | (1)30 | 1 |
顶点-顶点±72,±144度 | (1)2(5)2 | (5)4 | (5)6 | 24 |
棱心-棱心180度 | (2)6 | (2)10 | (1)2(2)14 | 15 |
面心-面心±120度 | (3)4 | (1)2(3)6 | (3)10 | 20 |
足球:阶60,顶点60个,面32个,棱数90条,20个正六边形,12个正五边形
转动群 | 顶点 | 面 | 棱 | 个数 |
不动 | (1)60 | (1)32 | (1)90 | 1 |
五边形面心-五边形面心±72,±144度 | (5)12 | (1)2(5)6 | (5)18 | 24 |
六边形面心—六边形面心±120度 | (3)20 | (1)2(3)10 | (3)30 | 20 |
正六边形棱中-棱180度(这种棱有30条) | (2)30 | (2)16 | (1)2(2)44 | 15 |
类足球:阶24,顶点24个,面14个,棱数36条,8个正六边形,6个正方形(就是那种把正八面体的每个角切掉等大的一块得出的形状)
转动群 | 顶点 | 面 | 棱 | 个数 |
不动 | (1)24 | (1)14 | (1)36 | 1 |
正方形面心-正方形面心±90度 | (4)6 | (1)2(4)3 | (4)9 | 6 |
正方形面心-正方形面心180度 | (2)12 | (1)2(2)6 | (2)18 | 3 |
六边形面心—六边形面心±120度 | (3)8 | (1)2(3)4 | (3)12 | 8 |
正六边形棱中-棱180度(这种棱有12条) | (2)12 | (2)7 | (1)2(2)17 | 6 |