定积分在几何学上的应用

一、平面图像的面积

1.1、直角坐标

1.1.1、例1:积分变量选取不同

如果选取x为积分变量,面积元素分成两部分,增加计算量
在这里插入图片描述

1.1.2、参数方程

在这里插入图片描述

1.2、极坐标

在这里插入图片描述

1.2.1、例

在这里插入图片描述

二、体积

2.1、旋转体的体积

2.1.1、绕x轴

在这里插入图片描述

2.1.2、绕y轴

在这里插入图片描述

2.1.3、例

在这里插入图片描述

2.2、平行截面面积为已知的立体的体积

在这里插入图片描述

2.2.1、例1

在这里插入图片描述

2.2.2、例2

在这里插入图片描述

三、平面曲线弧长

弧微分

3.1、光滑曲线弧是可求长的

在这里插入图片描述

3.1.1、参数方程下的曲线弧

在这里插入图片描述

3.1.2、直角坐标下的曲线弧

在这里插入图片描述

3.1.3、极坐标下的曲线弧

在这里插入图片描述

3.2、例题

3.2.1、例1

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值