Python绘图总结(seaborn篇)之数据分类

本文详述了使用seaborn库进行数据分类可视化的方法,涵盖了stripplot、swarmplot、boxplot、violinplot、barplot、countplot、pointplot以及多变量分类绘图factorplot和PairGrid的用法,是学习seaborn数据展示的好资源。
摘要由CSDN通过智能技术生成

学习https://seaborn.pydata.org 记录,描述不一定准确,具体请参考官网

%matplotlib inline
import numpy as np
import pandas as pd
from scipy import stats, integrate
import seaborn as sns
import matplotlib.pyplot as plt

# seaborn中文乱码解决方案
from matplotlib.font_manager import FontProperties
myfont=FontProperties(fname=r'C:\Windows\Fonts\simhei.ttf',size=14)
sns.set(font=myfont.get_name(), color_codes=True)
# 加载数据  https://github.com/mwaskom/seaborn-data 数据地址
np.random.seed(sum(map(ord, "categorical")))
titanic = sns.load_dataset("titanic")
tips = sns.load_dataset("tips")
iris = sns.load_dataset("iris")
# tips数据
tips[::25].head()
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
25 17.81 2.34 Male No Sat Dinner 4
50 12.54 2.50 Male No Sun Dinner 2
75 10.51 1.25 Male No Sat Dinner 2
100 11.35 2.50 Female Yes Fri Dinner 2

1、stripplot() 条形散点-重叠

# jitter=True 表示沿轴随机分布,相对避免重叠
fig, axes = plt.subplots(1,2,figsize=(12, 5),sharex=True, sharey=True)
sns.stripplot(x="day", y="total_bill", data=tips, ax=axes[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值