书生·浦语大模型(五)LMDeploy 量化部署 LLM-VLM 实践【作业部分】

一、基础作业(结营必做)

完成以下任务,并将实现过程记录截图:

(一)配置 LMDeploy 运行环境

(二)以命令行方式与 InternLM2-Chat-1.8B 模型对话

可以看出,回答的还是不错的。

二、进阶作业【部分作业后期补充】

完成以下任务,并将实现过程记录截图:

(一)设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。(优秀学员必做)

1、完成模型量化工作

2、将KV Cache比例再次调为0.4

lmdeploy chat /root/internlm2-chat-1_8b-4bit --model-format awq --cache-max-entry-count 0.01

3、对话如下:

  • 以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,分别使用命令行客户端与Gradio网页客户端与模型对话。(优秀学员必做)
  • 使用W4A16量化,调整KV Cache的占用比例为0.4,使用Python代码集成的方式运行internlm2-chat-1.8b模型。(优秀学员必做)
  • 使用 LMDeploy 运行视觉多模态大模型 llava gradio demo。(优秀学员必做)
  • 将 LMDeploy Web Demo 部署到 OpenXLab 。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值