一、基础作业(结营必做)
完成以下任务,并将实现过程记录截图:
(一)配置 LMDeploy 运行环境
(二)以命令行方式与 InternLM2-Chat-1.8B 模型对话
可以看出,回答的还是不错的。
二、进阶作业【部分作业后期补充】
完成以下任务,并将实现过程记录截图:
(一)设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。(优秀学员必做)
1、完成模型量化工作
2、将KV Cache比例再次调为0.4
lmdeploy chat /root/internlm2-chat-1_8b-4bit --model-format awq --cache-max-entry-count 0.01
3、对话如下:
- 以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,分别使用命令行客户端与Gradio网页客户端与模型对话。(优秀学员必做)
- 使用W4A16量化,调整KV Cache的占用比例为0.4,使用Python代码集成的方式运行internlm2-chat-1.8b模型。(优秀学员必做)
- 使用 LMDeploy 运行视觉多模态大模型 llava gradio demo。(优秀学员必做)
- 将 LMDeploy Web Demo 部署到 OpenXLab 。