45-dify案例分享- 用 Dify 搭建智能合同评审工作流,10 分钟搞定风险排查

1.前言

​ 企业在生产经营过程中多多少少会涉及合同评审的事情,合同评审是指在合同签订之前或之后,对合同条款、内容、条件及其合法性、合理性、可行性和风险性进行全面审查和分析的过程。其主要目的是确保合同的有效性,降低潜在的法律风险,保障各方的合法权益,并优化资源配置。具体而言,合同评审的核心内容包括以下几个方面:

image-20250423104144296

传统的合同评审费时费力,而且即使通过合同评审还会存在合同评审过后的合同存在风险。考虑到合同评审在企业内部管理中重要性,今天就带大家使用dify实现一个简单合同评审工作流。

我们先看一下工作流整体效果。

image-20250423104449245

工作流执行完成后,在直接回复可以看到评审的风险和相关回复内容:

image-20250423104638623

生成的结果 同时发生企业微信消息

image-20250423104737744

另外我们也可以下载合同评审的建议和意见书。

image-20250423104836510

那么这个工作流是如何制作的呢?话不多说,下面带大家实际操作实现这个工作流。

2.工作流的制作

我们回到dify工作台,新建一个chatflow工作流,如下图:

image-20250423105106539

开始

这个开始节点这里我们有1个参数,这个参数主要是提供用户上传的文件。

image-20250423105716479

文档提取器

接下来我们在工作流中添加一个文档提取器。

image-20250423105931463

文档提取器里面我们需要选择 上个节点中传入的file节点。

image-20250423110039129

这里有一个地方我们需要注意,文档提取器支持的文件格式是docx ,而前面的文件上传是既支持doc,又支持docx。这个地方要小心,测试的时候文件需要选docx,否则会出现错误,错误如下。

image-20250423110238791

LLM大语言模型

这个地方就是本文的重点了,我们主要是借助llm大语言模型+提示词实现用户上传的合同内容对她进行评审。

模型这里我们选择硅基流动提供的最新的智谱提供的 GLM4-32B-0414版本的模型。这个模型用起来速度非常快。准确性也还可以。如果没有硅基的小伙伴可以去这个地址https://cloud.siliconflow.cn/i/e0f6GCrN 新户可以送14元。

系统提示词

Role: 法律顾问、风险管理专家和行为心理学家的复合角色

author: 周辉

Background: 在商业活动中,合同是保障各方权益的重要法律文书。然而,合同中常常存在显性和隐性的风险,需要从法律、风险管理和心理学的多个维度进行分析和评估。

Profile: 
- 拥有丰富的商业合同审查经验的法律专家
- 具备系统性风险评估能力的风险管理顾问
- 精通人性分析的行为心理学家

Skills:
- 专业的法律分析能力
- 系统的风险识别和评估能力
- 深入的心理动机分析能力
- 精准的合同漏洞识别能力
- 实用的解决方案制定能力

Goals:
1. 全面审查合同条款,识别潜在法律风险
2. 分析合同背后的心理动机和可能的陷阱
3. 提供具体的修改建议和防范措施

Workflow:
1. 法律层面分析
   - 检查合同条款的合法性
   - 识别权利义务是否对等
   - 评估违约责任设置是否合理
   - 审查争议解决机制的有效性

2. 风险管理分析
   - 识别商业风险点
   - 评估履约风险
   - 分析财务风险
   - 考察操作风险

3. 心理动机分析
   - 解析对方的潜在意图
   - 评估可能的欺诈倾向
   - 分析权力动态关系
   - 预测可能的不诚信行为

OutputFormat:
1. 风险评估报告
   - 法律风险清单
   - 商业风险点列表
   - 心理风险提示
   - 具体修改建议

2. 防范建议
   - 条款修改建议
   - 风险控制措施
   - 谈判策略建议

Constrains:
1. 保持客观中立的分析态度
2. 基于事实和专业知识提供建议
3. 考虑建议的可操作性
4. 确保分析的全面性和系统性
5. 首次回复直接输出Initialization信息,不做多余解释

Initialization:
我是周辉的合同风险顾问,专注于从法律、风险管理和心理学三个维度为您分析合同中的潜在风险。请提供您需要审查的合同内容,我将为您进行全面的分析和评估。

为了更好地服务于您,请确保提供:
1. 完整的合同文本
2. 合同签订的背景信息
3. 您特别关注的问题或条款

用户提示词这里我们输入如下内容

请根据用户上传的合同{{#1745372422791.text#}}对该合同内容进行审查,提供合同评审的风险点

image-20250423110837277

以上我就设置好llm大语言模型工作流节点了。

Markdown转Docx文件

接下来我们使用到一个第三方工具叫做 Markdown转Docx文件.我们可以在插件市场找到它。

image-20250423111044734

选中它直接安装就可以了。

image-20250423111238918

我们在工作流中新添加刚才的插件。

image-20250423111431209

这里我们按照上图 1、2、3、4步骤把工具拖拽到工作台上。

输入变量 这里我们选择上个流程节点输出

image-20250423111744529

配置完成后这个节点就完成了配置了。它的主要功能是把llm大语言模型输出的mardown格式内容转出word.

直接回复

这个直接回复有2个内容,一个是 llm大语言模型mardown格式内容输出,一个是mardown格式内容转出word 文件输出。

image-20250423112022700

这里需要主要的是mardown格式内容转出word 文件输出 是一个file (文件) ,别输出文本内容。

企业微信

这里我们在流程输出的节点上并行了一个企业微信消息的输出。

填写 输入变量、群机器人WEBHOOK的KEY、群机器人WEBHOOK的KEY 3个值

image-20250423112304094

以上步骤我就完成整个工作流的制作。

3.验证及测试

我们可以点开预览按钮,上传我们需要测试的一个合同评审文档。

image-20250423112431850

和机器人聊天对话窗口可以随便填写。

22504232工作流

我们可以把这工作流分享给大家,分享的链接地址

体验地址https://difyhs.duckcloud.fun/chat/rJrrxs2pFty6gWb2 备用地址(http://14.103.204.132/chat/rJrrxs2pFty6gWb2)

相关资料和文档可以看我开源的项目 https://github.com/wwwzhouhui/dify-for-dsl

4.总结

今天主要带大家了解并实现了利用 Dify 构建简单合同评审工作流的功能。借助 Dify 强大的工作流设计能力,我们从新建工作流开始,依次添加开始节点、文档提取器、LLM 大语言模型、Markdown 转 Docx 文件、直接回复和企业微信消息输出等节点,完成了整个合同评审工作流的搭建。总体来说这个工作流不复杂,感兴趣的小伙伴可以去尝试。今天的分享就到这里结束了,我们下一篇文章见。

### Dify 语音播报功能及其应用案例 Dify 是一款支持多模态交互的人工智能开发平台,能够帮助开发者快速构建具备自然语言处理能力的应用程序。关于 Dify 的语音播报功能,它主要通过集成文本到语音(Text-to-Speech, TTS)技术实现,使用户不仅可以通过文字形式接收信息,还能听到清晰流畅的语音反馈。 #### 功能概述 Dify 平台允许开发者自定义代理助理的行为模式,其中包括设置对话开场白和初始问题[^1]。这使得当用户首次与代理助理互动时,系统可以主动提供任务类型的介绍以及可提问的例子。这种设计有助于提升用户体验并引导用户更高效地利用系统的各项功能。 对于具体的 **语音播报示例** 和 **实际应用场景** ,虽然官方文档未详尽列举所有可能的情况[^2],但从已知的功能特性出发,以下是几个典型的使用场景: 1. **客户服务机器人** - 场景描述:企业网站或移动应用程序中的虚拟客服角色采用 Dify 技术来响应客户的咨询请求。 - 实现方式:客户输入查询后,除了显示书面答复外,还会播放对应的音频文件解释解决方案。 2. **教育辅助工具** - 应用领域:在线学习平台上部署基于 Dify 构建的教学助手,用于朗读课程材料或者解答学生疑问。 - 特点优势:相比单纯依赖视觉媒介传递知识而言,加入听觉维度能更好地满足不同学习风格的需求。 3. **智能家居控制中心** - 工作原理:连接至家庭自动化设备网络之后,该类软件可通过声控命令完成诸如调节灯光亮度、设定闹钟时间等功能操作;与此同时也会发出确认通知告知当前状态改变情况如何。 4. **无障碍访问服务** - 面向群体:视力受损人士或其他难以依靠传统屏幕阅读方法获取资讯者。 - 解决方案:借助高质量合成音效再现网页内容摘要或者其他重要数据片段供这类特殊需求人群收听理解。 下面给出一段简单的 Python 脚本演示如何调用 API 接口触发一次基本的声音输出过程: ```python import requests def generate_speech(text): url = "https://api.dify.com/v1/synthesize" headers = { 'Authorization': 'Bearer YOUR_ACCESS_TOKEN', 'Content-Type': 'application/json' } payload = {"text": text} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: audio_url = response.json().get('audioUrl') return audio_url else: raise Exception(f"Error generating speech: {response.text}") if __name__ == "__main__": sample_text = "欢迎来到Dify的世界!" try: result = generate_speech(sample_text) print(result) except Exception as e: print(e) ``` 上述代码展示了发送 POST 请求给指定端点从而获得对应于特定字符串发音链接的过程。需要注意的是,在真实环境中应当妥善保管个人认证令牌以免泄露敏感权限信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值