机器学习笔记--特征工程之二:类别型特征

说明:

类别型特征主要指性别(男、女)、血型(A、B、AB、O)等只有在有限选项内取值的特征。类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作。

1、序号编码(Ordinal Encoding)

通常用于处理类别间具有大小关系的数据,如:成绩的高、中、低档

2、独热编码(One-hot ENcoding)

通常用于处理类别间不具有大小关系的特征,如:血型、性别

对于类别较多的情况下,使用独热编码要注意几点:

1)使用稀疏向量来节省空间

2)配合特征来降低维度

3、二进制编码

主要分两步:先用序号编码给每一个类别富裕一个类别ID,然后将类别ID对应的二进制编码作为结果

举例:

血型类别ID二进制表示独热编码
A10011000

B

20100100
AB30110010

O

41000001

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值