说明:
类别型特征主要指性别(男、女)、血型(A、B、AB、O)等只有在有限选项内取值的特征。类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作。
1、序号编码(Ordinal Encoding)
通常用于处理类别间具有大小关系的数据,如:成绩的高、中、低档
2、独热编码(One-hot ENcoding)
通常用于处理类别间不具有大小关系的特征,如:血型、性别
对于类别较多的情况下,使用独热编码要注意几点:
1)使用稀疏向量来节省空间
2)配合特征来降低维度
3、二进制编码
主要分两步:先用序号编码给每一个类别富裕一个类别ID,然后将类别ID对应的二进制编码作为结果
举例:
血型 | 类别ID | 二进制表示 | 独热编码 |
A | 1 | 001 | 1000 |
B | 2 | 010 | 0100 |
AB | 3 | 011 | 0010 |
O | 4 | 100 | 0001 |