随机过程(1.3)—— 随机变量的特征函数

  • 我们通常使用分布函数研究随机变量的性质,但是分布函数往往很难求。特征函数是研究随机变量分布的另一个重要工具,它和分布函数具有一一对应的关系,它们对随机变量的刻画是等同的,但是特征函数要好求得多

1. 特征函数的定义

  • 设随机变量 X X X 的分布函数(d.f.)为 F ( x ) F(x) F(x),则 X X X 的特征函数(c.f.)定义为
    φ X ( t ) : = E e i t X = ∫ R e i t x d F X ( x ) ,     t ∈ R \varphi_X(t):= Ee^{itX} = \int_\mathbb{R} e^{itx} dF_X(x), \space\space\space t\in\mathbb{R} φX(t):=EeitX=ReitxdFX(x),   tR
    1. 其中 i i i 是虚数单位,可见特征函数本质是分布函数 F ( X ) F(X) F(X) 的傅里叶变换,特征函数和分布函数有一一对应关系
    2. 可以把特征函数分解到实部和虚部,即 φ X ( t ) = ∫ R cos t x d F ( x ) + i ∫ R sin t x d F ( x ) \varphi_X(t) = \int_\mathbb{R} \text{cos}t x dF(x)+i\int_\mathbb{R}\text{sin}t x dF(x) φX(t)=RcostxdF(x)+iRsintxdF(x)。这个式子看起来很工整,但其实也很难用,一般不用它
  • 离散型随机变量和连续型随机变量的特征函数
    1. X X X 为离散型 r.v. 且分布律为 P ( X = x j ) = p j , j = 1 , 2 , . . . P(X=x_j)=p_j,j=1,2,... P(X=xj)=pj,j=1,2,...,则
      φ X ( t ) = ∑ j e i t x j p j \varphi_X(t) = \sum_je^{itx_j} p_j φX(t)=jeitxjpj
    2. X X X 为离散型 r.v. 且概率密度函数为 f f f,则
      φ X ( t ) = ∫ R e i t x f ( x ) d x \varphi_X(t) = \int_\mathbb{R}e^{itx}f(x)dx φX(t)=Reitxf(x)dx

2. 重要分布的特征函数

  1. 0-1分布 b ( 1 , p ) b(1,p) b(1,p) 的特征函数为:
    φ ( t ) = e i t p + e 0 p = p e i t + q \varphi(t) = e^{it}p + e^0p = pe^{it}+q φ(t)=eitp+e0p=peit+q
  2. 泊松分布 π ( λ ) \pi(\lambda) π(λ) P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , 2... P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2... P(X=k)=k!λkeλ,k=0,1,2... 的特征函数为:
    φ ( t ) = E e i t X = ∑ k = 0 ∞ λ k k ! e − λ e i t k = ∑ k = 0 ∞ ( λ e i t ) k k ! e − λ = e λ e i t e − λ = e λ ( e i t − 1 ) \begin{aligned} \varphi(t) = Ee^{itX} &= \sum_{k=0}^\infin \frac{\lambda^k}{k!}e^{-\lambda} e^{itk} \\ &=\sum_{k=0}^\infin \frac{(\lambda e^{it})^k}{k!} e^{-\lambda} \\ &= e^{\lambda e^{it}}e^{-\lambda} \\ &= e^{\lambda (e^{it}-1)} \end{aligned} φ(t)=EeitX=k=0k!λkeλeitk=k=0k!(λeit)keλ=eλeiteλ=eλ(eit1) 注意这个推导用到了泰勒展开 e x = 1 + x + x 2 2 ! + . . . + x n n ! + . . . e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}+... ex=1+x+2!x2+...+n!xn+...
  3. 标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 的特征函数为
    φ ( t ) = ∫ R e i t x 1 2 π exp [ − x 2 2 ] d x = ∫ R 1 2 π exp [ − x 2 − 2 i t x 2 ] d x = ∫ R 1 2 π exp [ − ( x − i t ) 2 − ( i t ) 2 2 ] d x = e − t 2 2 ∫ R 1 2 π e − ( x − i t ) 2 2 d x = e − t 2 2 \begin{aligned} \varphi(t) &= \int_\mathbb{R}e^{itx}\frac{1}{\sqrt{2\pi}}\text{exp}[{-\frac{x^2}{2}}]dx \\ &= \int_\mathbb{R}\frac{1}{\sqrt{2\pi}}\text{exp}\big[-\frac{x^2-2itx}{2} \big]dx \\ &= \int_\mathbb{R}\frac{1}{\sqrt{2\pi}}\text{exp}\big[-\frac{(x-it)^2-(it)^2}{2} \big]dx \\ &= e^{-\frac{t^2}{2}} \int_\mathbb{R} \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-it)^2}{2}}dx \\ &=e^{-\frac{t^2}{2}} \end{aligned} φ(t)=Reitx2π 1exp[2x2]dx=R2π 1exp[2x22itx]dx=R2π 1exp[2(xit)2(it)2]dx=e2t2R2π 1e2(xit)2dx=e2t2 注意倒数第二步中 ∫ R 1 2 π e − ( x − i t ) 2 2 d x \int_\mathbb{R} \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-it)^2}{2}}dx R2π 1e2(xit)2dx 其实是在 R \mathbb{R} R 上对分布 N ( i t , 1 ) N(it,1) N(it,1) 的概率密度函数积分,所以直接得 1

3. 特征函数的性质

3.1 五条性质

  1. φ X ( 0 ) = 1 \varphi_X(0)=1 φX(0)=1 ∣ φ X ( t ) ∣ ≤ 1 |\varphi_X(t)|\leq 1 φX(t)1 φ X ∗ ( t ) = φ X ( − t ) \varphi_X^*(t) = \varphi_X(-t) φX(t)=φX(t)

  2. φ X ( ⋅ ) \varphi_X(·) φX() R \mathbb{R} R 上一致连续(指不但要连续,而且当距离足够近时,函数值没有明显的变化)

  3. 对于一组相互独立的随机变量,和的特征函数 = 特征函数的连乘。即若 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 相互,有
    φ ∑ j = 1 n X j ( t ) = φ X 1 ( t ) . . . φ X n ( t ) \varphi_{\sum_{j=1}^n X_j}(t) = \varphi_{X_1}(t)...\varphi_{X_n}(t) φj=1nXj(t)=φX1(t)...φXn(t) 这个性质是特征函数比分布函数简单的关键原因之一

  4. E ∣ X ∣ n < ∞ E|X|^n < \infin EXn<,则 φ X ( t ) \varphi_X(t) φX(t) 关于 t ∈ R t \in \mathbb{R} tR n n n 阶可导,且对于 k ≤ n k\leq n kn
    E X k = i − k φ X ( k ) ( 0 ) EX^k = i^{-k}\varphi_X^{(k)}(0) EXk=ikφX(k)(0) 常用此式求 E X k EX^k EXk,证明如下
    在这里插入图片描述

  5. Y = a X + b Y=aX+b Y=aX+b,则 φ Y ( t ) = e i t b φ X ( a t ) \varphi_Y(t) = e^{itb}\varphi_X(at) φY(t)=eitbφX(at),证明如下
    在这里插入图片描述

3.2 Example

  • 求 二项分布 b ( n , p ) b(n,p) b(n,p) 和正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的特征函数
    在这里插入图片描述

4. 补充内容

4.1 唯一性定理

  • 对于 r.v.s. X 1 , X 2 X_1,X_2 X1,X2其分布函数相等等价于特征函数相等,即
    F X 1 ( x ) ≡ F X 2 ( x ) ⇔ φ X 1 ( x ) ≡ φ X 1 ( x ) F_{X_1}(x) \equiv F_{X_2}(x) \Leftrightarrow \varphi_{X_1}(x) \equiv \varphi_{X_1}(x) FX1(x)FX2(x)φX1(x)φX1(x) 唯一性定理说明了特征函数和分布函数的一一对应关系

4.2 逆转公式

  • 若 r.v. X X X 的特征函数 φ \varphi φ 绝对可积,即 ∫ R ∣ φ ( t ) ∣ d t < + ∞ \int_\mathbb{R} |\varphi(t)|dt < +\infin Rφ(t)dt<+,则 X X X 为连续型 r.v.,其分布函数处处可导,导函数 f f f 有界连续,且
    f ( x ) = 1 2 π ∫ R e − i t X φ ( t ) d t f(x) = \frac{1}{2\pi} \int_\mathbb{R} e^{-itX} \varphi(t) dt f(x)=2π1ReitXφ(t)dt
  • 逆转公式给出了使用特征函数反向计算概率密度函数的方法。但这个其实没什么用,因为我们引入特征函数的原因就是使用分布函数和概率密度函数计算太麻烦了

4.3 分布函数的再生性

  • 所谓分布函数的再生性,就是说服从同一分布的两个随机变量相加,得到的随机变量仍然服从该分布
  • 二项分布、泊松分布、正态分布的再生性如下
    在这里插入图片描述
  • 这里涉及到随机变量的加减运算,以前只能用卷积公式进行证明,非常麻烦,借助特征函数则可简单地进行证明。下面证明一下前两个
    在这里插入图片描述

4.4 多元特征函数

  • X = [ X 1 , X 2 , . . . , X n ] ⊤ , x = [ x 1 , x 2 , . . . , x n ] ⊤ , t = [ t 1 , t 2 , . . . , t n ] ⊤ \pmb{X} = [X_1,X_2,...,X_n]^\top,\pmb{x} = [x_1,x_2,...,x_n]^\top,\pmb{t} = [t_1,t_2,...,t_n]^\top XXX=[X1,X2,...,Xn],xxx=[x1,x2,...,xn],ttt=[t1,t2,...,tn],则 X \pmb{X} XXX 的特征函数为
    φ X ( t ) = φ ( t 1 , t 2 , . . . , t n ) = E e i t ⊤ X = E e i ∑ k = 1 n t i X i = ∫ ∫  ⁣ ⋯ ∫ R n e i t ⊤ x d F ( x ) \begin{aligned} \varphi_{\mathbf{X}}(\pmb{t}) &= \varphi(t_1,t_2,...,t_n) \\ &=Ee^{i\mathbf{t^\top X}} \\ &=Ee^{i \sum_{k=1}^nt_iX_i} \\ &= \int\int \dots\int_{\mathbb{R}^n}e^{i\mathbf{t^\top x}} dF(\mathbf{x}) \end{aligned} \\ φX(ttt)=φ(t1,t2,...,tn)=EeitX=Eeik=1ntiXi=RneitxdF(x)
  • 多元特征函数的性质
    1. φ ( t 1 , t 2 , . . . , t n ) \varphi(t_1,t_2,...,t_n) φ(t1,t2,...,tn) R n \mathbb{R}^n Rn 中一致连续,且
      ∣ φ ( t 1 , t 2 , . . . , t n ) ∣ ≤ φ ( 0 , 0 , . . . , 0 ) = 1 | \varphi(t_1,t_2,...,t_n) | \leq \varphi(0,0,...,0) = 1 φ(t1,t2,...,tn)φ(0,0,...,0)=1
    2. X \pmb{X} XXX 的特征函数为 φ X ( t 1 , t 2 , . . . , t n ) \varphi_{\mathbf{X}}(t_1,t_2,...,t_n) φX(t1,t2,...,tn),则 Y = C m × n X \pmb{Y} = \pmb{C}_{m\times n}\pmb{X} YYY=CCCm×nXXX 的特征函数为
      φ Y ( s ) = φ X ( C ⊤ s ) \varphi_{\mathbf{Y}}(\pmb{s}) = \varphi_{\mathbf{X}}(\pmb{C^\top s}) φY(sss)=φX(CsCsCs)
    3. X \pmb{X} XXX 的特征函数为 φ X ( t 1 , t 2 , . . . , t n ) \varphi_{\mathbf{X}}(t_1,t_2,...,t_n) φX(t1,t2,...,tn),各分量 X k X_k Xk 的特征函数为 φ X k ( t k ) \varphi_{X_k}(t_k) φXk(tk),则
      X 1 , . . . , X n 相 互 独 立 ⇔ φ X ( t 1 , t 2 , . . . , t n ) = ∏ k = 1 n φ X k ( t k ) X_1,...,X_n 相互独立 \pmb{\Leftrightarrow} \varphi_{\mathbf{X}}(t_1,t_2,...,t_n) = \prod_{k=1}^n \varphi_{X_k}(t_k) X1,...,XnφX(t1,t2,...,tn)=k=1nφXk(tk)
  • 6
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在Python中,可以使用概率论中的随机变量分布来进行统计计算。常见的离散型分布包括二项分布和泊松分布,连续性分布包括正态分布、均匀分布和指数分布等。这些分布可以用来计算概率、期望和方差等统计量。 对于正态分布,可以使用scipy.stats库中的norm模块进行计算。例如,可以使用norm.cdf函数计算小于某个值的概率,使用norm.ppf函数计算给定累积概率时的反函数值。代码示例如下: ``` from scipy.stats import norm # 计算小于40的概率 p1 = norm.cdf(40, loc=50, scale=10) # 计算30到40之间的概率 p2 = norm.cdf(40, loc=50, scale=10) - norm.cdf(30, loc=50, scale=10) # 计算小于2.5的概率 p3 = norm.cdf(2.5, 0, 1) # 计算-1.5到2之间的概率 p4 = norm.cdf(2) - norm.cdf(-1.5) # 计算累计概率为0.025时的反函数值 q1 = norm.ppf(0.025, loc=0, scale=1) # 计算累计概率为0.975时的反函数值 q2 = norm.ppf(0.975, 0, 1) print(p1, p2, p3, p4, q1, q2) ``` 对于计算随机变量的概率分布的均值和方差,可以使用numpy库进行计算。代码示例如下: ``` import numpy as np # 假设有一个数据框df,其中包含了不合格品数和概率 mymean = sum(df['不合格品数'] * df['概率']) # 计算均值 myvar = sum((df['不合格品数'] - mymean) ** 2 * df['概率']) # 计算方差 mystd = np.sqrt(myvar) # 计算标准差 print(mymean, myvar, mystd) ``` 以上是关于Python统计学中随机变量的概率分布的一些基本操作和计算方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python统计学03——随机变量的概率分布](https://blog.csdn.net/weixin_46277779/article/details/126673517)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值