【论文笔记】Tensor Completion for Weakly-dependent Data on Graph for Metro Passenger Flow Prediction

本文介绍了作者针对时空数据中的弱依赖性问题,提出的新型低秩CP张量分解与完备框架,结合L1和图拉普拉斯惩罚,用于香港地铁客流预测。研究提出了一种块坐标下降优化算法,并通过实验展示了其在地铁客流量数据中的优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最近有荔枝要成为最有钱途的科研小哥,哼!所以开始了苦逼的科研生活,所以需要分享我的论文笔记,并且希望能够跟众大科研学者沟通交流以及多多请教!好了话不多说开始本次第一个论文笔记分享。
首先分享一下这篇论文的摘要内容,这篇文章的摘要主要讲了:“低秩张量分解和完全吸引了众多学者的极大兴趣。然而,低秩结构是一种全局属性,当给定特定的图结构时,数据呈现复杂且弱的依赖关系时,它将无法实现。推动这项研究的一个特殊应用是时空数据分析。如初步研究所示,弱依赖可能会恶化低秩张量完成性能。本文提出了一种新的低秩CANDECOMP/PARAFAC(CP)张量分解和完备框架,通过引入L1-范数惩罚和图拉普拉斯惩罚来模拟图的弱依赖性。我们进一步提出了一种基于块坐标下降的高效优化算法,以实现高效的估计。以香港地铁客流数据为例,对常规张量完成方法的性能进行了改进。”
我们分析这篇文章的摘要就大概知道了作者干了一件什么事情,作者以中国香港的地铁站的客流量预测为研究对象或者研究实体,并且解释了为什么普通的低秩张量分解为什么不能适用我们这种研究的对象身上哈。直言翻译过来就是,我提的方法非常适合用来做这种时空数据缺失情况下的补全工作,就是NB

Introduction

紧接着,作者在引言部分介绍了最近几年对于张量补全和张量分解的一些官方的论述(eg.第一段就写了张量补全和张量分解这项研究是如何如何的火啊,尤其是介绍了时空数据可以被建模为一个高阶张量,而且 张量补全还可以很好的用来补全那些缺失的时空数据),当然这些说实在的作为一名数学渣渣我当然是看不懂的,毕竟脑子里还是停留在高等数学、线性代数、矩阵论这些东西。
然后,小渣渣的我连续看了一周的关于张量的数学知识,(可是把我坑惨了),好了言归正传作者将地铁的客流量定义为一种张量表达的形式: χ s t a t i o n × p o i n t × d a y \chi^station \times point \times day χstation×point×day ,该表达形式呢作者声称很完美的表达了时空背景下的地铁车站乘客流量。但是作者笔锋一转说到:“由于图结构的地理空间背景信息,两个站点如果有连接的话他们之间的相似性非常高,反之那就不高并列举了站点8和站点77的客流量曲线图。”据此,作者解释了什么是Weakly-Dependent data on Graph
重点来了,作者介绍了他们的论文工作的贡献,他们提出了一个根据Weakly-Dependent data on Graph类型数据的正则化CP张量补全和分解框架,并且该论文做出的贡献有:

  • 在CP分解的基础上构建了WGD类型数据的补全方法。
  • 提出了一个高效 的优化方法。
  • 证明了所提方法在地铁乘客客流量数据中的有效性。

Literature Review

这一部分呢个人感觉没什么好解释的,因为符号都看不懂什么意思啊,简直天书!索性去学习了张量的相关概念,好在网络上有几个好大哥写的博客非常的不戳!把链接奉上:
张量基础概念张量分解知乎上的张量讲解比较透彻自己恶补这方面知识!

Formulation

这部分(需要后续补充内容,敬请期待 … \ldots ),
但是文中作者介绍了一种优化的方法这个方法叫做***Block Coordinate Descent***直译过来就是块状坐标下降优化方法。这让我只知道梯度下降方法的白脖子有点不知所措哇!于是老规矩我立马查了查他是什么来路,木哈哈哈链接奉上:块坐标下降法

Experiments

紧接着就来到了实验环节部分了,在作者的实验设计中,作者的数据集是这样定义的:每个工作日是凌晨的五点钟到次日的凌晨一点钟,每五分钟采样一次,并且根据降采样的方法作者采样到了247个数据点,(有疑惑的是文中没说是随机降采样还是根据什么方法降采样的)。为了很好地分割数据作者使用2017年1月1号凌晨五点到2017年2月19号凌晨一点的数据作为训练集,验证集采用2017年2月19号凌晨五点~2017年2月20号早上11点10分的时间段数据,测试集采用2017:02:20 11:10AM ~ 2017:02:21 01:00AM作为缺失数据,(在这里其实也就是测试数据集了)。
所以,作者选择了15个车站的数据得到了 χ 15 × 247 × 51 \chi^{15 \times 247 \times 51} χ15×247×51 大小的张量数据。
到了Graph部分,然后作者又定义了图数据,作者根据车站的地理空间信息表示为 G P O I G_{POI} GPOI,并且对于每个车站的周围兴趣点收集为向量表示(酒店公寓、休闲购物、大型建筑、公共服务设施、居民区、学校、公共交通),每个维度的值作为相应设施的总量。
之后得到每个车站的 P O I POI POI向量,然后就可以 计算出车站 i i i j j j之间的余弦相似性:
{ G P O I } i , j = P O I i ⋅ P O I j ∣ ∣ P O I i ∣ ∣ ⋅ ∣ ∣ P O I j ∣ ∣ \{G_{POI}\}_{i,j} = \frac{{POI_i}\cdot{POI_j}}{||POI_i||\cdot||POI_j||} {GPOI}i,j=POIiPOIjPOIiPOIj
到了构建图模型的环节作者又介绍了 k − h o p k-hop khop方法和二元图方法。接着,作者对比了文中所提到的方法和他们自己提出的方法。这些方法分别是:

  • Low-Rank Tensor Completion by Riemannian Optimization(geomCG)
  • High Accuracy Low Rank Tensor Completion(HaLRTC)
  • Fully Bayesian CP Factorization(FBCP)
  • Tensor Rank Estimation based on L 1 L_1 L1-regularized orthogonal CP decompositon(TREL1_CP)
  • Low-Rank Tensor Decomposition with feature Variance Maximization via CP(TDVM_CP)
  • Multi-Task for Inflow and Outflow Prediction combining the Lasso regularization term,Ridge regularization term, and Laplacian regularization term(MTIOP#LRS)

那么关于结果用脚指头想一想就是肯定作者牛逼嘛!

Conclusion and Future Work

本文作者研究了图模型基于弱依赖模式数据情况下的张量补全问题,并基于地铁客流量的研究对象。作者提出了新颖的张量补全方法,该方法通过引入弱依赖惩罚和图乘法算子。并且提出使用块坐标下降法优化该模型。

  • 作者的未来研究工作是致力于Tucker张量分解方法对于弱依赖模式的数据的使用。
### 基于点云的3D场景图生成中的Transformer应用 #### 背景介绍 在基于点云的3D场景图生成领域,Transformer作为一种强大的序列建模工具被广泛研究并应用于处理复杂的几何数据结构。通过引入自注意力机制(Self-Attention),Transformer能够捕捉全局依赖关系,在节点特征提取和边特征生成方面表现出显著优势。 #### Transformer的核心作用 Transformer的主要功能在于其能够有效地学习点云中不同部分之间的相互关系。具体而言,它通过对输入点云进行编码来捕获局部和全局上下文信息[^2]。这种能力使得Transformer非常适合用于构建高质量的3D场景图表示。 #### Graph Embedding Layer (GEL) 和 Semantic Injection Layer (SIL) 在提到的研究工作中,模型设计包含了两个重要组件——Graph Embedding Layer(GEL)以及Semantic Injection Layer(SIL)。 - **Graph Embedding Layer**: 此层负责将原始点云转换成具有语义意义的嵌入向量形式。这些嵌入不仅保留了几何特性还融合了来自其他传感器(如RGB图像)的信息。 - **Semantic Injection Layer**: 这一层进一步增强了由GEL产生的初始嵌入,注入额外的高层次语义理解到每一个节点及其连接边上,从而提升最终预测准确性。 #### Node and Edge Feature Generation 对于节点与边缘特征生成过程来说,利用Transformer架构可以实现更精细且全面的关系表达。例如,在给定一组三维坐标作为输入时,经过多头注意力计算后得到的新表征既考虑到了单个点的重要性也兼顾整体分布模式的影响。 以下是简化版代码示例展示如何使用PyTorch框架搭建基本版本的Point Cloud Transformer: ```python import torch.nn as nn import torch class PointCloudTransformer(nn.Module): def __init__(self, d_model=512, nhead=8, num_encoder_layers=6): super(PointCloudTransformer, self).__init__() encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers) def forward(self, src): out = self.transformer_encoder(src.permute(1,0,2)) return out.permute(1,0,2) # Example usage model = PointCloudTransformer() input_tensor = torch.rand((32, 1024, 512)) # Batch size of 32 with 1024 points each having a dimensionality of 512 output = model(input_tensor) print(output.shape) # Should output the same shape as input tensor ``` 此段脚本定义了一个简单的变压器网络实例化对象`PointCloudTransformer`, 它接受批量大小为32的数据集,其中每个样本包含1024个维度均为512维的点位信息,并返回相同形状的结果张量。 #### 总结 综上所述,Transformers因其卓越的能力而成为解决复杂任务的有效手段之一,特别是在涉及大量离散单元间交互分析的情况下更是如此。它们帮助我们更好地理解和描述真实世界环境下的物体布局情况,推动了计算机视觉及相关学科的发展进程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值