KADT:Learning Data T eaching Strategies Via Knowledge Tracing

翻译:

摘要

教学在人类学习中起着基础性的作用。一般来说,人类的教学策略包括评估学生的知识进步,从而调整教学材料,以提高学习进步。人类教师可以通过在任务中追踪学生对重要学习概念的知识来实现这一点。然而,这种教学策略在机器学习中还没有得到很好的利用,因为目前的机器教学方法倾向于直接评估单个训练样本的进展,而没有注意到学习任务中潜在的学习概念。在本文中,我们提出了一种新的方法,称为知识增强数据教学(KADT),它可以通过跟踪学习任务中多个学习概念的知识进度来优化学生模型的数据教学策略。具体而言,该方法引入了一个知识跟踪模型,根据潜在的学习概念动态捕捉学生模型的知识进展。然后,我们开发了一种注意力集中机制,以提取与类标签相关的学生模型的知识表示,这使我们能够在关键训练样本上制定数据教学策略。我们已经评估了KADT方法在四个不同的机器学习任务上的性能,包括知识跟踪、情感分析、电影推荐和图像分类。结果与最先进的方法比较,实证验证了KADT始终优于其他所有任务。

1 介绍

消化知识的能力一直是人类智力的一个重要特征。众所周知,学生的学习成绩不仅取决于学生对不同学习理念的消化能力,而且还受到老师的教学策略的显著影响。一个好的老师会优化学习材料、练习和解决问题技巧的教学策略,使学生能够实现她的学习目标。这通常是通过在一个学习任务中跟踪学生对重要学习概念的知识进展来完成的,例如,小学数学课程中的加法、减法和乘法。人类教师可以根据学生的表现水平来发展这样的教学策略。这种教学策略的发展演变是充分发挥学生不同层次潜能的关键。
一个问题是:机器能像人类老师一样学习教学吗?在机器学习场景中,教学策略通常包括排序训练数据(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值