提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
三电平逆变器学习1——三电平逆变器建模,控制环路设计以及PI参数整定;附相关代码和S-函数仿真
前言
秋招临近尾声了,终于有时间记录一下近年来三电平变流器的学习
由于在网上关于SVPWM,PI参数整定等方面的知识大多零零散散,很少看到有人进行一些系统化的记录;因此我也希望自己能够写一篇学习博客,一方面方便自己复习,另一方面也希望能帮助大家理解。
由于内容太多了,还是打算分两部分来写,这一部分先介绍系统建模和控制环路设计以及PI参数整定。
由于这是我第一次在csdn上记录一些学习过程,包含一些自己的理解,不当之处欢迎指出,也希望大家能够提出一些宝贵的建议,共同学习!
后续有时间也会保持更新一些别的控制方法
一、三电平逆变器建模
三电平逆变器的一般拓扑结构如图1所示,这里我用的是T-型三电平逆变器,其他三电平逆变器的拓扑当然也是适用的
图1
对于上面这个拓扑来说,开关器件1和3是互补导通的,2和4也是互补导通的,那么可以总结出每一相都有三种可能的开关状态,定义为P,O,N,如表1所示。
表1
状态 | Sx1 | Sx2 | Sx3 | Sx4 | Vxo |
---|---|---|---|---|---|
P | 1 | 1 | 0 | 0 | Vdc/2 |
O | 0 | 1 | 1 | 0 | 0 |
N | 0 | 0 | 1 | 1 | -Vdc/2 |
下面推导电压矢量
由KVL,可以得到电路的电压关系式:(没用过latex形式的公式,就用图片了)
在三相平衡的系统中,有:
由上面两个关系式可以得到:
最后可以得到逆变器输出电压为:
为了得到电压矢量,需要将三相变换至两相旋转坐标系下,经过Clark变换,可以得到电压矢量为:
再将得到的逆变器输出电压代入,得到开关状态表示的电压矢量:
这样的话我们就建立了表1中3种开关状态与电压矢量的关系式,代入这三种状态,总共可以得到
3
3
3^3
33种不同的电压矢量。
当然我们也发现上面这个表达式其实和对Vao,Vbo,Vco直接做Clark变换的结果是一样的,为什么要这么繁琐的推导呢,这里我的理解是,从控制的角度来看,最后由pi得到的输出再加上输出电压前馈的结果其实是Van,Vbn和Vcn,因此还是得以这三个作为逆变器输出电压来得到电压矢量
最后画出空间电压矢量图
三电平逆变器的电压矢量分为大,中,小3种,主要区别在于矢量幅值不同,其中大矢量幅值为
2
V
d
c
/
3
2Vdc/3
2Vdc/3,中电压矢量幅值为
3
V
d
c
/
3
\sqrt{3}Vdc/3
3Vdc/3,小电压矢量幅值为
V
d
c
/
3
Vdc/3
Vdc/3。
二、电压电流双闭环控制设计与参数整定
1.d-q坐标系下的电路模型
根据内模原理
,为了实现对控制输入信号的零稳态误差跟踪,控制器中必须包含外部信号的数学模型。因此,PI控制器只能对阶跃信号实现零稳态误差跟踪,所以需要将
α
β
\alpha\beta
αβ坐标系下的数学模型转换至
d
q
dq
dq坐标系下。
根据KVL和KCL可以得到如下的电路方程,这里就不进行详细的推导了:
再将上述方程用控制框图的形式表示:
从控制框图中可以看出,dq分量存在相互耦合,这对控制环路的设计会产生影响,也就是说我控制d轴分量时,q轴分量的变化会影响其控制性能,这是我们所不期望的,需要在控制器设计时需要进行解耦。
其实所谓的逆变器控制归根到底就是要得到一个逆变器侧的机端电压 V d q V_{dq} Vdq,从电路方程中可以看出,第一个公式与 V d q V_{dq} Vdq直接相关,而后面却包含一个电感电流的微分,对于电感电流这种高频信号,微分会引入更高频变化的电感电压分量,这会导致机端电压 V d q V_{dq} Vdq高频变化,导致系统不稳定,因此可以采用一个PI控制器替换这个微分量,有了这个思想,下面可以进行电流内环的设计。
在进行参数设计之前,首先明确一下电路的基本参数,如下表:
表2
参数 | 值 | 参数 | 值 |
---|---|---|---|
母线电压 | 200V | 滤波电感 | 2mH |
母线电容 | 1500uF | 滤波电容 | 20uF |
采样频率 | 16kHz | 额定频率 | 50Hz |
控制频率 | 16kHz | 电阻负载 | 15Ω |
注:后面参数设计与仿真均使用上表参数
2.电感电流内环设计与参数整定
首先得到PI控制器替换后的逆变器侧的机端电压
V
d
q
V_{dq}
Vdq的表达式:
因为这里进行的是电流内环的设计,因此控制环路的输入和输出分别是电感电流参考
i
d
∗
i^*_{d}
id∗和实际电感电流
i
d
i_{d}
id,结合上一部分得到的电路模型,可以得到电流内环的控制框图为:
这里有朋友就会发现为什么用的是P控制器,而不是PI控制器呢?
因为在进行电流内环设计时需要考虑DSP的一步延迟补偿和规则采样法下的零阶保持器,将控制环路配置为典型I型系统
,使它具有一个更快的动态响应;后续的电流外环配置为典型II型系统
,使它具有较好的一个抗干扰能力。
那么能否使用PI控制器呢?我的理解是也可以,张兴老师的《PWM整流器及其控制》里写的是将PI控制器的零点与小惯性环节
的极点相互抵消,依然也是一个典型I型系统;也有人说不可以用PI控制器,因为内环用PI,外环也用PI,在整个控制环路中引入了2个1/s,从相频域表现来看会多延迟一个90°,在相位稳定裕度上难以保证,如果有朋友更好的想法也欢迎交流。
再回到电流环的设计中,可以看到输出电压前馈和dq电流解耦使得控制环路与电路模型相互抵消,同时考虑之前提到的一步延迟补偿和零阶保持器,可以得到简化的电流内环结构图:
关于
K
P
W
M
K_{PWM}
KPWM我发现很多人都没有解释清楚,其实这个概念还是很重要的,稍后我再对这个进行详细的解释。
首先,典型I型系统的开环传递函数的标准形式为:
2.1.合并高频小惯性环节
由于采样和控制时间T很小,远小于20ms,只会影响高频部分的幅频特性,因此可以将这两个高频小惯性环节合并,新的惯性环节的时间常数为这两个小惯性环节的时间常数之和。
2.2.设计KPWM
关于 K P W M K_{PWM} KPWM,一般取值为1,因为从公式和控制框图来看,在得到逆变器侧的机端电压 V d q V_{dq} Vdq前,除了比例参数Kp,并没有其他增益环节。有人认为 K P W M K_{PWM} KPWM与母线电压和载波周期的比例有关,我觉得这个是后续代入SVPWM计算占空比时才需要考虑的,也就是说由 K P W M K_{PWM} KPWM可以计算得到实际的比较值。
当然,这里考虑的是代入公式的参数都是实际值的情况,如果电流采样与电压采样的比例不一样,例如在进行定点计算时,电流是Q15,而电压是Q12的数据,则需要重新进行考虑。
2.3.标幺化
通常标幺化的基准是母线电压,因为要进行逆变,母线电压总是高于输出电压,因此,将PI控制器替换后的逆变器侧的机端电压 V d q V_{dq} Vdq的公式两边同时除以母线电压,便得到了标幺化的公式,这个公式并不会影响PI参数的整定,在相同的PI参数下,原公式得到的是实际需要逆变器机端电压,而标幺后的公式得到的是实际需要逆变器机端电压除以母线电压。
2.4.参数整定
完成了上述三个工作,可以得到电流环的一个开环传递函数
G
o
i
G_{oi}
Goi:
可以看到这个公式与典型I型系统是一致的,查找参数表,如下所示:
可以看到当取KT=0.5
时,满足最优阻尼比,代入计算可以得到:
最终得到电流内环的参数Kp=10.6667
2.5.仿真与伯德图验证
将电流内环的参数代入控制框图中,画出电流环的开环传递函数的bode图,如下图所示:
可以看到,电流环的截止频率为773Hz,相角裕度为65.5°,满足闭环系统稳定条件,然而一般情况下,电流内环的截止频率设计为(1/10-1/5)fs
,相角裕度设计为30-60°
,用该方法得到的电流环截止频率偏低!会影响系统的动态特性,但也是可以用的。
再用Matlab/Simulink仿真观察系统的阶跃响应:
这里比较了合并高频小惯性环节前后系统的响应,观察合并后是否会对实际输出产生影响,仿真结果如下图所示:
可以看到二者的响应曲线几乎是一致的,超调量与表格参数一致。
综上,便完成了电流内环的设计与仿真验证
3.电容电压外环设计与参数整定
行文至此,让我们再重新理一下我们做整个控制环路设计的思路。
首先,在介绍双闭环前,我们明确了最终要得到的控制输出是逆变器侧的机端电压 V d q V_{dq} Vdq,于是我们发现与这个量直接相关的是电感电流的微分方程,所以我们将这个微分方程费了很大的劲搞成了一个电流环。但是这里引出两个问题:1.电流环的参数是多少?2.控制对象明明是电容电压,如何包含进来?
为了回答这两个问题,再次回到d-q坐标下的电路模型,在第二个方程中,可以看到电感电流与电容电压的微分直接相关,因此,按照同样的思路,将微分项替换为PI控制器,不就又得到一个电感电流的输出,再将这个作为电流环的参考,刚好得到两个串联的控制环路,顺利解决上面的两个问题。
3.1.整体控制环路描述
有了上面的思想,我们在电流内环的基础上,将电压外环包含进来,得到一个整体的控制框图:
这里虽然画的是简化图,但是要注意的是外环也是需要考虑解耦项和负载电流前馈项,在简化图中,耦合项相互抵消了,在实际运用过程中要注意把解耦项加上。
3.2.参数整定
在分析电流内环时,将电流内环设计成典型的I型系统,那么在设计电压外环时,可以设计为一个的典型的II型系统,其中,典型II型系统的一般开环传递函数为:
为了得到这个形式,首先得到电流内环的闭环传递函数为:
由于1.5Ts很小,根据高阶系统的近似化处理,可以将这一项忽视,再由电流内环参数设计时得到的:Kp/L=1/3T,最终,得到电流内环的闭环传递函数的尾一标准形式为:
从而得到电压外环的开环传递函数为:
为了满足系统稳定性,开环传递函数要从-20dB穿越0dB线,也就是说
1
/
τ
1/\tau
1/τ要小于
1
/
T
1/T
1/T,这样从主导关系来看,首先是
s
2
s^2
s2的-40dB,再到
s
s
s的-20dB,再回到
s
2
s^2
s2的-40dB,相角从-180°出发慢慢接近-90°再回到-180°。
那么可以将中间-20dB的频率段称为中频段
,定义一个比例参数h用以描述中频段的长度:
而截止频率一般取在中频段的中点,因为从伯德图上来看,在中频段的区间内,相角是先慢慢靠近-90°再回到-180°,那么中间点应该就是最大的相角裕度点,虽然这个过程肯定不是严格满足二次函数,但是取中点是一个简单且近似最优的结果。
下面就是确定h的取值,前人的研究依然为我们做了铺垫,查找II型系统的参数表:
可以看到当h=5
时是一个相对较好的结果,回到典型II型系统的一般表达式,T是已知的,可以得到其余两个参数的表达式为:
这里的w1指的是
1
/
τ
1/\tau
1/τ对应的频率,K的确定采用的是“振荡指标法”中的闭环幅频特性的谐振峰值最小准则
,感兴趣的朋友可以自行了解,这里不做过多介绍。
再将参数代入实际的电压外环的表达式,计算得到电压外环的参数为:Kpu=0.0444,Kiu=47.4074
3.3.仿真与伯德图验证
同样将电压外环的参数代入,画出伯德图,如下所示:
可以看到,电压环的截止频率为360Hz,相角裕度为41.7°,满足闭环系统稳定条件,并且外环的截止频率是小于内环的,满足实际应用的需求。
再用Matlab/Simulink仿真观察系统的阶跃响应:
这里比较了对电流内环近似化处理前后的影响,观察近似后是否会对实际输出产生影响,仿真结果如下图所示:
可以看到二者的响应曲线几乎是一致的。
3.4.引入低通滤波器的进一步优化
细心的朋友便发现了,电压外环的超调也太大了,已经达到了37.6%,为了对这个超调进行抑制,可以在给定前加一个低通滤波器,其惯性时间常数一般为4倍或者5倍的惯性时间常数,但是我们这里电压环的惯性时间常数为3T,所以可以取15T的一个低通滤波器:
得到的结果如下所示:
可以看到,引入低通滤波器后,超调明显减小。
综上,便完成了电压电流双闭环的控制环路设计与参数整定工作
在这个工作的基础上,我们已经可以得到我们所需的逆变器机侧电压,下面就是将这个机侧电压正确的输出,也就是SVPWM调制
总结
这一章节介绍了三电平逆变器的建模,控制环路设计已经PI参数整定的知识,在下一章继续介绍SVPWM调制,本来想都放在一篇文章里,但是发现内容实在太多了,还是放两个文章了,最后把完整工程附上。
相关仿真资料
相关仿真下载地址:https://download.csdn.net/download/wyc235/89927851
这里给的是完整的仿真工程,采用S-function实现,使用前请确保可以编译S-funtion。
仿真为自己搭建,代码是自己手写的,亲测有效,如有问题也欢迎私信交流。
创作不易,感谢支持!