生成模型--综述2

生成模型的本质

  本质就是希望用一个我们知道的概率模型来拟合所给的数据样本,也就是说,我们得写出一个带参数 θ 的分布 qθ(x)。然而,我们的神经网络只是“万能函数拟合器”,却不是“万能分布拟合器”,也就是它原则上能拟合任意函数,但不能随意拟合一个概率分布,因为概率分布有“非负”和“归一化”的要求。这样一来,我们能直接写出来的只有离散型的分布,或者是连续型的高斯分布。

两种

  1)自回归流
  图像应该是一个离散的分布,因为它是由有限个像素组成的,而每个像素的取值也是离散的、有限的,因此可以通过离散分布来描述。
  这个思路的成果就是 PixelRNN 一类的模型了,我们称之为“自回归流”,其特点就是无法并行,所以计算量特别大。所以,我们更希望用连续分布来描述图像。当然,图像只是一个场景,其他场景下我们也有很多连续型的数据,所以连续型的分布的研究是很有必要的。

  2)对于连续型的,我们也就只能写出高斯分布了,而且很多时候为了方便处理,我们只能写出各分量独立的高斯分布,这显然只是众多连续分布中极小的一部分,显然是不够用的。
  为了解决这个困境,我们通过积分来创造更多的分布:
  ** q(x)=∫q(z)*q(x|z)dz **
  这里 q(z) 一般是标准的高斯分布,而 q(x|z) 可以选择任意的条件高斯分布或者狄拉克分布。这样的积分形式可以形成很多复杂的分布。理论上来讲,它能拟合任意分布。
  故目标就是求出参数 θ,那一般就是最大似然,假设真实数据分布为 p̃(x),那么我们就需要最大化目标:
  max【logq(x)】
  然而 qθ(x) 是积分形式的,难以求解" "VAE 和 GAN 在不同方向上避开了这个困难。
  a)VAE 没有直接优化目标,而是优化一个更强的上界,这使得它只能是一个近似模型,无法达到良好的生成效果。

  b)GAN 则是通过一个交替训练的方法绕开了这个困难,确实保留了模型的精确性,所以它才能有如此好的生成效果。但不管怎么样,GAN 也不能说处处让人满意了,所以探索别的解决方法是有意义的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值