Swish: a Self-Gated Activation Function

Swish是一种自门控激活函数,其设计灵感来源于LSTM和highway network中的门控机制。Swish函数公式为y=x*sigmoid(x),具有无界性、平滑性和自门控特性,有助于优化和泛化,且易于在深度学习库中实现。实验显示,Swish在ImageNet上提升了MobileNASNet-A和Inception-ResNet-v2的top-1准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Swish: a Self-Gated Activation Function

  Swish 的设计受到 LSTM 和 highway network 中使用 sigmoid 函数进行门控的启发。我们使用同样的值进行门控来简化门控机制,称为自门控(self-gating)。自门控的优势是它仅需要一个简单的标量输入,而正常的门控需要多个标量输入。该特性令使用自门控的激活函数如 Swish 能够轻松替换以单个标量作为输入的激活函数(如 ReLU),无需改变参数的隐藏容量或数量。

激活函数的公式和图像

  公式为:y=x*sigmoid(x)

在这里插入图片描述

在这里插入图片描述

激活函数的导数公式和图像

在这里插入图片描述

在这里插入图片描述

分析

  1)Unboundedness(无界性)有利于防止在slow training时gradient逐渐趋于0,造成饱和。同时,being bounded也是有优势的,因为bounded的active function可以有很强的regulairzation,较大的negative inputs会被化解。

  2)同时,smoothness也是对optimization和generalization也是有着很重要的角色。

  该实验是:随机初始化一个6层神经网络,采集Swish layer后的loss landscape,对于一个smooth 的loss landscape更加容易去做优化,因为该Swish layer有着更强的traversable,同时减小了对初始化和learning rate的依赖。

实现

  在 TensorFlow 等大多数深度学习库中只需更改一行代码即可实现 Swish 函数。

性能

  对于新的激活函数,在ImageNet上top-1 accuracy对于Mobile NASNet-A提高了0.9%,对Inception-ResNet-v2取得了0.6%的提升。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值