Scala版算子(包括:join,leftjoin,rightjoin,fulljoin,distinct,saveAsTextFile,foreachPartition,mapPartit)【代码】

本文深入探讨Scala中常见的数据处理算子,包括join、leftjoin、rightjoin、fulljoin实现数据融合,distinct操作去除重复项,saveAsTextFile用于结果持久化,以及如何通过foreachPartition和mapPartitions进行并行处理优化。通过实例解析,帮助读者掌握Scala大数据处理的核心技巧。
摘要由CSDN通过智能技术生成
package com.bjsxt.spark

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import scala.actors.threadpool.Arrays

import scala.collection.mutable.ListBuffer

object SparkJoin {
  def main(args: Array[String]): Unit = {
   val  conf=new SparkConf().setAppName("test").setMaster("local");
   val  sc=new SparkContext(conf);
   val rdd6=sc.parallelize(Array("a","b","b","b","c","d","d","e","f","g","h"),2);
    /**
     * saveAsTextFile:将计算结果保存成文件
     */
   rdd6.saveAsTextFile("./result")
   /**
     * foreachPartition:只是简单的分区遍历,没有其他的操作
     */
   val rdd8=rdd6.foreachPartition(iter=>{
    while(iter.hasNext){
         println(iter.next())
    }
     
   })
   println("_____________________________________________________-")
   /**
    * mapPartitions插入分区操作
    */
   val
Spark Scala中的join算子是一种数据转换函数,用于将两个数据集合并成一个新的数据集。在Spark中,join操作可以通过不同的方式进行,包括内连接、左连接、右连接和外连接。 内连接(inner join)是指将两个数据集合并为一个新的数据集,其中只保留两个数据集中都包含的元素。这种连接方式通常用于需要匹配两个数据集中的关键字或条件时。 左连接(left join)是指将两个数据集合并为一个新的数据集,其中保留左侧数据集中所有的元素,同时将右侧数据集中与左侧数据集匹配的元素合并到新数据集中。如果右侧数据集中没有与左侧数据集匹配的元素,则在新数据集中使用null填充。 右连接(right join)是指将两个数据集合并为一个新的数据集,其中保留右侧数据集中所有的元素,同时将左侧数据集中与右侧数据集匹配的元素合并到新数据集中。如果左侧数据集中没有与右侧数据集匹配的元素,则在新数据集中使用null填充。 外连接(outer join)是指将两个数据集合并为一个新的数据集,其中保留左侧和右侧数据集中所有的元素,同时将左侧和右侧数据集中匹配的元素合并到新数据集中。如果左侧或右侧数据集中没有与另一个数据集匹配的元素,则在新数据集中使用null填充。 在Spark Scala中,join算子通常通过调用DataFrame或Dataset API中的join函数来实现。具体实现方式取决于使用的连接方式和数据集类型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值