考虑灵活性供需不确定性的储能优化配置(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

考虑灵活性供需不确定性的储能优化配置研究

一、研究背景

二、国内外研究现状

三、研究内容

(一)调峰灵活性评估指标

(二)储能辅助调峰的双层优化模型

四、模型实现

(一)基于MATLAB的实现

(二)关键技术与方法

五、运行结果与分析

六、结论与展望

(一)研究结论

(二)研究展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文档


💥1 概述

文献来源:

随着风电渗透率的增加,部分常规电源被风电替代,系统的灵活性调节能力不足,大规模风电的

随机波动性给系统带来较大的调峰压力[1]。储能能够实现对风电随机波动性的互补,提高系统的调峰灵活性。因此,在含大规模风电系统中配置储能,研究规划与运行中的灵活性问题,具有重要意义。

由于储能的规划与运行密切相关,文献[7-8] 提出储能配置的双层优化模型,外层优化储能的配

置方案,内层优化储能的充放电功率。高比例可再生能源系统中,灵活性的量化评估逐渐成为系统运行特性的核心和关键[9],然而以上储能的优化配置模型主要从经济性角度研究储能的规划、运行问题,未考虑系统的灵活性,忽略了关键因素对储能配置方案的影响,不利于系统的安全、可靠运行。

目前,国内外学者针对系统灵活性及其指标的研究取得一定的进展,文献[10]通过统计法计算系

统的调峰不足概率,计算量较大。文献[11-12]采用蒙特卡罗模拟方法计算调峰不足概率/期望,该方法虽然具有较好的精度,但其时间复杂度较高[13]。文献 [14]考虑灵活性资源的优化调度和灵活性需求不确定性,建立储能的双层优化配置模型。但并未考虑机组的随机强迫停运,也忽略了机组的爬坡率对系统灵活性不足风险及储能配置方案的影响。为全面量化大规模风电并网对系统调峰

灵活 性的影响,本文考虑机组的随机停运、最大/最小出力限制以及不同出力状态下的向上/向下爬坡率等调峰能力的不确定性,提出调峰灵活性评估指标,综合考虑系统的经济性和灵活性,基于有效容量分布的时序随机生产模拟,建立储能辅助调峰的双层优化模型。上层储能配置模型以综合成本最小为目标,考虑风电出力的不确定性,将考虑多个随机场景的不确定性规划模型,转化为简单求解的多个确定性模型。下层运行优化模型在上层储能配置方案的基础上,考虑调峰需求和调峰能力的不确定性,以总调峰能力不足期望最小为目标,并将灵活性不足损失成本返回上层目标函数。

考虑灵活性供需不确定性的储能优化配置研究

一、研究背景

随着风电渗透率的不断增加,部分常规电源被风电替代,系统的灵活性调节能力面临不足。大规模风电的随机波动性给系统带来了较大的调峰压力。储能作为一种有效的调节手段,能够实现对风电随机波动性的互补,提高系统的调峰灵活性。因此,在含大规模风电系统中配置储能,并研究规划与运行中的灵活性问题,具有重要意义。然而,目前已有的储能优化配置模型大多主要从经济性角度研究储能的规划、运行问题,未充分考虑系统的灵活性,忽略了关键因素对储能配置方案的影响,这可能不利于系统的安全、可靠运行。

二、国内外研究现状

国内外学者针对系统灵活性及其指标的研究取得了一定进展。部分研究通过统计法计算系统的调峰不足概率,但计算量较大。还有一些研究采用蒙特卡罗模拟方法计算调峰不足概率/期望,该方法虽精度较好,但时间复杂度较高。另外,有文献考虑灵活性资源的优化调度和灵活性需求不确定性,建立了储能的双层优化配置模型,但未考虑机组的随机强迫停运,也忽略了机组的爬坡率对系统灵活性不足风险及储能配置方案的影响。

三、研究内容

(一)调峰灵活性评估指标

为全面量化大规模风电并网对系统调峰灵活性的影响,考虑机组的随机停运、最大/最小出力限制以及不同出力状态下的向上/向下爬坡率等调峰能力的不确定性,提出调峰灵活性评估指标。该指标能够更准确地反映系统在各种不确定因素下的调峰灵活性水平。

(二)储能辅助调峰的双层优化模型

  1. 上层储能配置模型:以综合成本最小为目标,考虑风电出力的不确定性。将考虑多个随机场景的不确定性规划模型,转化为简单求解的多个确定性模型。通过这种方式,在满足系统一定性能要求的前提下,寻找最优的储能配置方案,以降低系统的综合成本,包括储能的建设成本、运行成本等。
  2. 下层运行优化模型:在上层储能配置方案的基础上,考虑调峰需求和调峰能力的不确定性,以总调峰能力不足期望最小为目标。同时,将灵活性不足损失成本返回上层目标函数,实现上下层之间的有效联动。下层模型通过优化储能的充放电功率等运行策略,使系统在面对不确定性时,总调峰能力不足的期望最小化。

四、模型实现

(一)基于MATLAB的实现

本文采用MATLAB作为主要的建模和求解工具。利用MATLAB丰富的函数库和强大的计算能力,实现模型的构建、求解和仿真分析。例如,通过相关函数进行数据处理、模型参数设置、优化算法调用等操作。

(二)关键技术与方法

  1. 不确定性处理:针对风电出力、调峰需求等不确定性因素,采用合适的方法进行处理。如可以利用概率模型来描述不确定性,通过对历史数据的分析和统计,得到各不确定因素的概率分布,进而在模型中考虑这些不确定性对储能优化配置的影响。或者采用鲁棒优化策略,确保在各种可能的不确定性场景下,模型的解都具有一定的稳健性。
  2. 场景生成:为了更好地处理风电出力等不确定性,需要生成多个随机场景。可以根据历史数据和相关概率分布,采用合适的场景生成算法,生成具有代表性的风电出力场景等,以便在模型中全面考虑不同的实际情况。

五、运行结果与分析

通过对所建立的双层优化模型进行求解和仿真分析,得到不同情况下的储能优化配置方案以及系统的运行指标。分析不同参数变化对储能配置方案和系统性能的影响,例如风电渗透率的变化、机组爬坡率的改变等对总调峰能力不足期望、综合成本等指标的影响。通过这些分析,可以为实际的储能规划和系统运行提供有价值的参考。

六、结论与展望

(一)研究结论

本文提出的考虑灵活性供需不确定性的储能优化配置模型,综合考虑了系统的经济性和灵活性,能够更全面地应对大规模风电并网带来的调峰问题。通过双层优化模型的建立和求解,得到了合理的储能配置方案和运行策略,有效降低了系统的总调峰能力不足期望和综合成本。

(二)研究展望

未来的研究可以进一步考虑更多的不确定性因素,如电价波动、负荷预测误差等对储能优化配置的影响。同时,可以探索更先进的优化算法和技术,提高模型的求解效率和精度。此外,加强与实际工程的结合,将研究成果更好地应用于实际电力系统中,也是未来的重要研究方向。

📚2 运行结果

部分代码:

%%系统最小技术出力为460,最大为1660,
P_D=[700;750;850;950;1000;1100;1150;1200;1040;1120;1160;1200;1120;1040;1200;1050;1000;1100;1200;1120;1040;1100;900;800];
delta_l_up=1660-max(P_D)-max(P_D)*0.2;%%调峰裕度
delta_l_do=460-min(P_D)+min(P_D)*0.2;
%%计算风电接入调峰能力的要求
peak_demand=zeros(100,24);
CNT=[];
for n=2:24
    peak_demand(:,n)=Wind_tree(:,n)-Wind_tree(:,n-1)+P_D(n)-P_D(n-1);
    
end

for i=1:100
    for j=1:24
    if peak_demand(i,j)>0&&peak_demand(i,j)>delta_l_up
        
CNT(i,j)=peak_demand(i,j)-delta_l_up;
    elseif peak_demand(i,j)<0&&peak_demand(i,j)<delta_l_do
        CNT(i,j)=peak_demand(i,j)-delta_l_do;
    else
       CNT(i,j)=0; 
    end
    end
end
%%统计调峰能力灵活指标
nn1=CNT;
nn1(nn1>0)=0;%%下调峰不足
nn2=CNT;
nn2(nn2<0)=0;%%上调峰不足
nn1=(nn1);
figure
subplot(2,2,1)
% edges = [0 1:0.25:2 24];
% histogram(abs(nn1),edges)
hist(nn1,100);
title('下调峰不足频率直方图');xlabel('缺额MW');ylabel('f');  %%new!
subplot(2,2,2)
[ni,ak]=hist(nn1,100);
fi=ni/length(nn1);
plot((ak),fi);
title('下调峰不足经验分布函数');xlabel('缺额MW');ylabel('F(x)');  %%new!
legend('经验分布函数');
subplot(2,2,3)
hist(nn2,100);
title('上调峰不足频率直方图');xlabel('缺额MW');ylabel('f');  %%new!
subplot(2,2,4)
[ni,ak]=hist(nn2,100);
fi=ni/length(nn2);
plot((ak),fi);
title('上调峰不足经验分布函数');xlabel('缺额MW');ylabel('F(x)');  %%new!
legend('经验分布函数');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]孙伟卿,宋赫,秦艳辉等.考虑灵活性供需不确定性的储能优化配置[J].电网技术,2020,44(12):4486-4497.DOI:10.13335/j.1000-3673.pst.2020.0667.

🌈4 Matlab代码、数据、文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值