论文《Mining Latent Structures for Multimedia Recommendation》阅读

论文概况

本文是2021年ACMMM 上的一篇论文,该篇文章通过利用物品的多模态信息结合传统CF算法来处理推荐问题。

Introduction

作者提出问题

  • 以前的算法一般是通过用户-项目的关系构建图结构,却未能明确地对项目之间的关系进行建模,以下图为例

    图中用户1与用户2都曾与帽子、短裤交互,根据协同过滤的原则,推荐系统会向用户2推荐用户1曾交互的衬衫,但不会推荐大衣(大衣与上述物品类似,完全有被推荐的理由)。
    可以看出,只有协同的物品关系是通过建模高阶项目-用户-项目共现而隐含发现的,这有可能导致与携带语义关系的真正项目-项目关系的差距。

对于上述问题,作者提出一个全新的推荐模型(LATents Tructure miningmethod for multImodal reCommEndation,LATTICE):(1)开发了一个新的模态感知结构学习层,从多模态特征中学习模态感知的项目结构,并聚合模态感知的项目图来构建潜在的多模态项目图。(2)对学习到的潜在图进行图卷积,以明确考虑项目关系。由此产生的项目表征被注入了高阶项目关系,这些关系将被添加到CF模型的输出项目嵌入中

Method

在这里插入图片描述

A.Modality-aware Latent Structure Learning

为了将物品与物品之间的关系融入模型,我们先进行物品多模态邻接矩阵的建立,每个模态拥有一个独立的邻接矩阵。邻接矩阵中边的权重是不同模态下两个物品的余弦相似度
S i j m = ( e i m ) ⊤ e j m ∥ e i m ∥ ∥ e j m ∥ . (1) S_{i j}^{m}=\frac{\left(e_{i}^{m}\right)^{\top} \boldsymbol{e}_{j}^{m}}{\left\|\boldsymbol{e}_{i}^{m}\right\|\left\|\boldsymbol{e}_{j}^{m}\right\|} .\tag{1} Sijm=eim ejm (eim)ejm.(1)
其中 e j m \boldsymbol{e}_{j}^{m} ejm表示物品j在模态m下的嵌入。
为了保持矩阵的稀疏性,我们只取矩阵中相似度最高的K条边,其余边的权重设置为0
S ^ i j m = { S i j m , S i j m ∈  top-  k ( S i m ) , 0 ,  otherwise  (2) \widehat{S}_{i j}^{m}=\left\{\begin{array}{ll} S_{i j}^{m}, & S_{i j}^{m} \in \text { top- } k\left(S_{i}^{m}\right), \\ 0, & \text { otherwise } \end{array}\right.\tag{2} S ijm={Sijm,0,Sijm top- k(Sim), otherwise (2)
(2)所得到的稀疏化的有向图邻接矩阵。为了减轻爆炸或梯度消失的问题,我们将邻接矩阵归一化为:
S ˉ m = ( D m ) − 1 2 S ^ m ( D m ) − 1 2 , (3) \bar{S}^{m}=\left(D^{m}\right)^{-\frac{1}{2}} \widehat{S}^{m}\left(D^{m}\right)^{-\frac{1}{2}},\tag{3} Sˉm=(Dm)21S m(Dm)21,(3)
尽管我们通过利用原始的多模态特征获得了模态感知的初始图结构 S ˉ m \bar{S}^{m} Sˉm,但它们对于推荐任务可能并不理想。因此我们对每个物品的嵌入进行科学系的线性变化
e ‾ i m = W m e i m + b m , (4) \overline{\boldsymbol{e}}_{i}^{m}=W_{m} e_{i}^{m}+b_{m},\tag{4} eim=Wmeim+bm,(4)
其中 W m ∈ R d ′ × d m  and  b m ∈ R d ′ W_{m} \in \mathbb{R}^{d^{\prime} \times d_{m}} \text { and } b_{m} \in \mathbb{R}^{d^{\prime}} WmRd×dm and bmRd,然后重复(1)(2)(3)过程,得到能更好表达项目之间相似度的邻接矩阵 A ~ m \tilde{A}^{m} A~m
然而,尽管初始图可能是有噪声的,但它通常仍带有关于项目图结构的丰富和有用的信息。此外,邻接矩阵的急剧变化将导致不稳定的训练。为了保持初始物品图的丰富信息并稳定训练过程,我们增加了一个跳过连接,将学到的图与初始图结合起来。
A m = λ S ~ m + ( 1 − λ ) A ~ m , (5) A^{m}=\lambda \widetilde{S}^{m}+(1-\lambda) \widetilde{A}^{m},\tag{5} Am=λS m+(1λ)A m,(5)
最终,我们将不同模态下的邻接矩阵融合成最终物品相似度邻接矩阵
A = ∑ m = 0 ∣ M ∣ α m A m , (6) A=\sum_{m=0}^{|\mathcal{M}|} \alpha_{m} A^{m},\tag{6} A=m=0MαmAm,(6)
其中 α m \alpha_{m} αm是可学习的参数。

B. Graph Convolutions

利用(6)得到的邻接矩阵,我们实现物品与物品之间转化关系的提取
h i ( l ) = ∑ j ∈ N ( i ) A i j h j ( l − 1 ) , (7) \boldsymbol{h}_{i}^{(l)}=\sum_{j \in \mathcal{N}(i)} A_{i j} h_{j}^{(l-1)},\tag{7} hi(l)=jN(i)Aijhj(l1),(7)
其中 h i ( l ) \boldsymbol{h}_{i}^{(l)} hi(l)物品i在第l轮的嵌入表示。然后,将最终得到的物品嵌入与用户的初始信息输入之后的CF模型。

C.Combining with Collaborative Filtering

设CF模型最终得到的物品嵌入为 x i \boldsymbol{x}_{i} xi,用户嵌入为 x u \boldsymbol{x}_{u} xu,将CF得到的物品嵌入与利用物品相似度图迭代得到的物品嵌入相结合,得到最终的物品嵌入
x ^ i = x ~ i + h i ( L ) ∥ h i ( L ) ∥ 2 (8) \widehat{\boldsymbol{x}}_{i}=\tilde{\boldsymbol{x}}_{i}+\frac{\boldsymbol{h}_{i}^{(L)}}{\left\|\boldsymbol{h}_{i}^{(L)}\right\|_{2}}\tag{8} x i=x~i+ hi(L) 2hi(L)(8)
物品打分为
y ^ u i = x ~ u ⊤ x ^ i . (9) \hat{y}_{u i}=\tilde{x}_{u}^{\top} \widehat{x}_{i} .\tag{9} y^ui=x~ux i.(9)

D. Optimization

采用贝叶斯个性化排名(BPR)损失来计算loss,让预测结果更为准确
L B P R = − ∑ u ∈ U ∑ i ∈ I u ∑ j ∉ I u ln ⁡ σ ( y ^ u i − y ^ u j ) (10) \mathcal{L}_{\mathrm{BPR}}=-\sum_{u \in \mathcal{U}} \sum_{i \in I_{u}} \sum_{j \notin I_{u}} \ln \sigma\left(\hat{y}_{u i}-\hat{y}_{u j}\right)\tag{10} LBPR=uUiIuj/Iulnσ(y^uiy^uj)(10)

总结

LATTICE模型弥补了传统模型只关注用户-项目转化却忽略了项目本身所蕴含的特征关系的缺陷,实现了能作用在大多数模型基础上创新,相当于优化了其他模型的初始化过程,且在物品嵌入部分加入了物品-物品转化关系。且因为前后部分是分开的,可以利用高性能计算思维来加快代码运行速度。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: DebiasingRecommendationbyLearningIdentifiableLatentConfounders是一篇论文,该论文探讨了推荐系统中存在的偏见问题,并提出了一种解决偏见问题的方法。该方法的关键在于通过学习可识别的潜在混淆变量来降低推荐系统的偏见。具体来说,该方法通过在推荐系统中引入潜在混淆变量,将观察到的用户行为分解为潜在混淆变量和推荐系统行为的影响,从而降低了推荐系统的偏见。 该方法不仅可以应用于推荐系统,还可以应用于其他机器学习任务中存在偏见的问题。该论文的贡献在于提出了一种新的方法来降低推荐系统的偏见,并在多个数据集上进行了实验证明了该方法的有效性。 ### 回答2: 《通过学习可识别的潜在混淆因素进行去偏推荐》是一篇有关推荐系统的论文。推荐系统的目标是根据用户的兴趣和偏好,为其提供个性化的推荐。然而,推荐系统往往会受到潜在的混淆因素的影响,导致推荐结果产生偏差。 这篇论文提出了一种新的方法,通过学习可识别的潜在混淆因素来解决推荐系统中的偏差问题。该方法的核心思想是将推荐问题转化为因果推理问题,并将混淆因素作为因果推理中的干扰变量来处理。 具体而言,该方法首先通过对已有数据进行分析,找到与推荐结果相关的潜在混淆因素。然后,使用机器学习算法来学习这些混淆因素,并将其纳入模型中。通过考虑混淆因素,模型可以更准确地评估用户的兴趣和偏好,并为其提供更加准确的推荐。 在实验中,研究人员使用了真实世界的数据集来验证他们的方法。结果表明,该方法在解决推荐系统中的偏差问题上表现出了良好的效果。与传统的推荐模型相比,该方法能够更好地区分用户的兴趣和混淆因素,从而提供更加准确和个性化的推荐。 总的来说,该论文提出了一种新的方法来解决推荐系统中的偏差问题,即通过学习可识别的潜在混淆因素。该方法的创新之处在于将推荐问题转化为因果推理问题,并将混淆因素纳入模型中。通过实验证明,该方法在提高推荐准确性和个性化水平方面取得了良好的效果。 ### 回答3: 《通过学习可识别的潜在混淆因素来消除偏见的推荐系统》是一篇关于消除推荐系统偏见的研究论文。这篇论文主要介绍了一种通过学习潜在混淆因素来消除推荐系统中的偏见的方法。 推荐系统常常基于用户行为数据来生成个性化推荐结果。然而,用户行为数据中可能存在偏见,例如性别、种族、年龄等因素会影响用户的行为选择,从而导致推荐偏见。为了解决这个问题,本文提出了一种使用可识别的潜在混淆因素来进行去偏的方法。 首先,研究者通过分析用户行为数据,发现了一些与混淆因素相关的模式。这些混淆因素是指可能导致偏见的因素,比如在购买电视节目时,用户可能更倾向于选择与自己相同性别的节目。 接下来,研究者提出了一种学习和消除混淆因素的方法。他们通过建立一个模型来同时学习用户行为和混淆因素之间的关系。这个模型可以根据用户的行为数据以及混淆因素的特征来预测用户的行为选择。 然后,研究者使用这个模型来进行去偏。他们引入了一个干预机制,即改变混淆因素的取值,在推荐过程中实现对潜在混淆因素的干预。通过人为地改变混淆因素的取值,可以减少混淆因素对推荐结果的影响,从而实现去偏。 最后,研究者通过实验验证了他们的方法的有效性。结果表明,与传统的方法相比,使用潜在混淆因素进行去偏的推荐系统能够显著减少推荐结果的偏见,并提高个性化推荐的质量。 总的来说,《通过学习可识别的潜在混淆因素来消除偏见的推荐系统》提出了一种新的方法来解决推荐系统中的偏见问题。该方法通过学习用户行为与混淆因素的关系,并通过引入干预机制来消除偏见。这项研究对于优化推荐系统并提高个性化推荐的准确性具有重要的指导意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值