给定两个3维列向量 α 和 β,满足 α^T β = 2。我们考虑矩阵 βα^T,其中 β 是列向量,α 是行向量。
矩阵 βα^T 是一个3x3矩阵,其元素由以下公式给出:
(βα^T)ij = βi * αj
首先,我们可以计算矩阵 βα^T 乘以向量 x 的结果:
(βα^T) x = β (α^T x)
这是因为矩阵乘法的定义是将矩阵的行与向量的列进行内积。左边的矩阵 (βα^T) 的第 i 行与向量 x 进行内积,得到的结果就是 βi *α1*x1+ βi *α2*x2+βi *α3*x3。右边的表达式是将向量 (α^T x) 与列向量 β 进行内积,得到 β 乘以一个标量值 (α^T x)。
现在让我们来考虑矩阵 βα^T 的特征值问题:
(βα^T) v = λ v
其中 v 是非零特征向量,λ 是对应的特征值。
代入矩阵乘法的结果,得到:
β (α^T v) = λ v
由于 α^T v 是一个标量,我们可以将其表示为 c,即 α^T v = c。因此,上述方程变为:
β c = λ v
这意味着向量 β 与特征向量 v 共线,且 β 与 v 的方向相同。换句话说,v 是 β 的一个放缩版本。
考虑到 α^T β = 2,我们有:
c = α^T v = 2
因此,特征值方程变为:
β * 2 = λ v
解出 λ = 2,这就是矩阵 βα^T 的唯一特征值。无论特征向量 v 为何,对应的特征值始终为 2。
总结:矩阵 βα^T 的非零特征值为 2,而其他特征值均为零。