fft之后的实际频率

快速傅里叶变换FFT

fft在matlab中的函数就是fft,它式离散傅里叶变换的快速算法。fft的数学公式为:
X [ k ] = 1 N ∑ n = 1 N x [ n ] e j 2 π k n N X[k] = \frac{1}{N}\sum_{n=1}^{N}x[n]e^{j\frac{2\pi kn}{N}} X[k]=N1n=1Nx[n]ejN2πkn
原来的信号的序列长度为 N N N,则fft之后得到的结果依然是 N N N个点。
fft之后的 X [ k ] X[k] X[k]表示了第 k k k个频率分量。那么如何将 k k k对应到真实频率上去呢?

真实频率

真实频率取决于两点:

  1. 得到原始序列 x [ n ] x[n] x[n]的采样频率;
  2. 采样点数;

例如采样点数是1000,采样频率是1000Hz,那么真实频率就是1,2,…,500Hz。
例如采样点数是2000,采样频率是1000Hz,那么真实频率就是0.5,1,1.5,…,500Hz。
由此可知道,采样率不变,采样点数越多,频率分辨率便越高。
fft之后得到的最高频率分量是采样频率的1/2,频率区分的刻度(即频率分辨力=采样频率/采样点数)。
假设真实频率为 f ( k ) f(k) f(k),采样频率为 f s f_s fs,采样点数为 N N N,真实频率为:
f ( k ) = k ∗ ( f s N ) f(k)=k*(\frac{f_s}{N}) f(k)=k(Nfs)

仿真实验

以下仿真程序,信号模型为多频点信号,采样率为1000,采样点数为2000个,因此频率分辨率为1000/2000=0.5Hz,频率值为0.5,1,1,5,…500。
代码如下:

%% 离散傅里叶变换
% 2022.5.26
% cleal all; close all; clc;
T = 2; % 总时间
fs = 1000; % 采样率
dt = 1/fs; % 采样间隔
t = 0:dt:T-dt; % 时间刻度向量
N = length(t); %序列长度
f1 = 100; % 频率分量1
f2 = 300; % 频率分量2
x = cos(2*pi*f1*t)+cos(2*pi*f2*t); % 基带信号
plot(t,x) % 绘图
X = fftshift(fft(x))*2/N; % fft
deltFrequency = fs/N; %频率分辨率
freqAxis = -fs/2:deltFrequency:fs/2-deltFrequency; % 频率正半轴
stem(freqAxis,abs(X));% 绘制幅度谱
axis([-501,501,0,1.3]); %控制坐标轴变量

幅度谱如下:
在这里插入图片描述

图1. 多频点信号的幅度谱

在进行fft并且绘图的时候,经常需要进行频率轴坐标的设置,有点繁琐,所以我编写了一个函数,可以将fft和绘制频谱图封装起来:

function [X] = fftPlot(x,fs)
% 该函数用于离散傅里叶变换,并且绘制频谱图,重点在于频谱图的下标显示为对应频率值
%  Author:huasir 2023.11.22 @Beijing
% Input : 
%   * x: 输入信号
%   * fs:采样率
% Output : 
%    * X:离散傅里叶变换的结果,复数
N = length(x);
X = fftshift(fft(x))*2/N; % fft
deltFrequency = fs/N; %频率分辨率
freqAxis = -fs/2:deltFrequency:fs/2-deltFrequency; % 频率正半轴
figure;
plot(freqAxis,abs(X));% 绘制幅度谱
end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nwsuaf_huasir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值