图像的卷积及相关

图像处理中常常需要用一个滤波器空间滤波操作。空间滤波操作有时候也被叫做卷积滤波,或者干脆叫卷积(离散的卷积,不是微积分里连续的卷积);滤波器也有很多名字:卷积模版、卷积核、掩模、窗口等。

空间滤波可以分为线性滤波和非线性滤波。非线性滤波常见的有中值滤波、最大值滤波等,相当于自定义一个函数,在数学上由于不满足线性变换因此叫做非线性滤波。这里不细研究它。

线性滤波则通常是:将模版覆盖区域内的元素,以模版中对应位置元素为权值,进行累加。看起来挺简单的,但是要区分相关(cross-correlation)卷积(convolution)两种模式。为什么呢?因为在MATLAB里是有所区分的,而且不少中文书里面把它们混淆了。

我们最容易的理解是:将模版中元素从左到右、从上到下,作为使用顺序,那么卷积操作的结果,就是模版第一个元素乘以它覆盖的元素,加上模版第二个元素乘以它覆盖的元素,再加上模版第三个元素乘以它覆盖的元素,...,一直加到模版最后一个元素乘以它覆盖的元素。好吧,其实就是:模版覆盖区域内,元素逐一相乘然后累加,此时的对应位置就是上下投影后被覆盖的位置。

上面这个理解确实是看起来最容易理解的,因而很多中文书把它叫做"卷积"。然而这个概念其实叫做相关,而卷积则相当于:将同样的模版旋转180°后,再做"相关"操作。当然,如果模版是180°对称的那么卷积和相关是相同的。但是并不是所有的模版都对称。因此,我建议,在滑窗操作、计算图像梯度等场合,不要使用“卷积”,而要使用“滤波”或者“相关”。因为,我们通常讲的卷积,其实是相关,那就不要用卷积这个词以免引起混淆。

对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,

这个操作就叫卷积或者协相关。卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者

就没有什么差别了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nwsuaf_huasir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值