【深度学习】Stable Diffusion中的Hires. fix是什么?Hires. fix原理

Hires. fix

https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#hires-fix

提供了一个方便的选项,可以部分地以较低分辨率呈现图像,然后将其放大,最后在高分辨率下添加细节。换句话说,这相当于在txt2img中生成图像,通过自己选择的方法将其放大,然后在img2img中对现在已经放大的图像进行第二次处理,以进一步完善放大效果并创建最终结果。

默认情况下,基于SD1/2的模型在非常高的分辨率下生成的图像质量很差,因为这些模型只是在512px或768px的分辨率下进行训练的。通过在denoising过程中利用小图像的构图,这种方法可以避免这个问题。通过在txt2img页面上选中“Hires. fix”复选框来启用此功能。

在这里插入图片描述

小图的分辨率由使用宽度/高度滑块设置。大图的尺寸由三个滑块控制:“按比例缩放”乘数(高分辨率

### Hires.fix R-ESRGAN 4x 下载与安装 Hire.fix 功能通常集成于 Stable Diffusion Web UI 工具中,用于提升生成图像的质量并支持高分辨率输出。如果希望单独下载和配置 R-ESRGAN 4x+ 或其他类似的 AI 图像放大模型作为升级器,以下是相关信息: #### 获取 R-ESRGAN 4x+ R-ESRGAN 是一种基于深度学习的超分辨率算法,能够显著提高图像质量,尤其适合写实风格的图片处理[^2]。该模型可以通过以下方式获取: 1. **官方 GitHub 仓库**: 访问 [R-ESRGAN 的 GitHub 页面](https://github.com/xinntao/Real-ESRGAN),这里提供了预训练模型文件以及详细的使用说明。 2. **Stable Diffusion Web UI 集成**: 如果正在使用 Stable Diffusion Web UI,则可以直接通过其内置的扩展管理工具来加载 R-ESRGAN 模型。 #### 安装步骤 为了将 R-ESRGAN 4x+ 添加至 Hire.fix 中,需完成以下几个操作环节: - 导航到 Extras Tab,在此选项卡内可发现 Upscaler 设置区域[^3]。 - 确保已正确安装 `realesrgan` Python 库及其依赖项。可通过运行以下命令完成环境准备: ```bash pip install realesrgan ``` - 将下载好的 R-ESRGAN 模型放置于指定目录下(通常是 Web UI 的 models 文件夹),以便程序识别并调用相应版本的增强器。 #### 使用注意事项 当对比不同方法产生的结果时,可能肉眼难以分辨细微差异[^1]。然而,AI 增强技术相较于传统插值手段确实具备更优的表现力。因此建议尝试多种参数组合以获得最佳视觉体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值