在使用 Stable Diffusion 生成图像时,你是否曾因画质不够清晰、细节不足而感到遗憾?好消息是,Stable Diffusion 提供了一个强大的功能——Hires.fix,专门为提升图像质量而设计。通过这一功能,你可以在保持图像完整性的同时,大幅度提升分辨率和细节表现,打造出更清晰、更惊艳的作品。
在本篇文章中,我们将深入解析 Hires.fix 的工作原理,详细讲解其使用方法和优化技巧,让你从入门到精通,轻松掌握这一利器!
01
什么是高清修复Hires.fix?
高清修复(Hires.fix)是 Stable Diffusion 内置的一项功能,主要用于生成高清图像。它通过先生成低分辨率图像,再基于低分辨率图像进行高分辨率扩展的方式,确保图像的结构和细节兼顾。
它的优势:
\1. 提升分辨率:无需额外的放大工具,即可生成高质量图像。
\2. 优化细节:让图像的边缘、纹理更加清晰自然。
\3. 减少资源消耗:在低分辨率生成的基础上优化效率,避免高分辨率直接生成的高硬件需求。
02
文生图:高清修复实战
文生图里有一个内置的功能,叫做高清修复(Hires.fix)。
如下图所示:
图 Hires.fix
下面,我们使用文生图(txt2img)来动手做一张图吧!
这里我使用的是 LOFI 模型,如果屏幕前的你还没有下载 LOFI 模型,点击下面的链接直接下载即可。
LOFI 模型下载地址:https://civitai.com/models/9052。
正面提示词(Prompts):
负面提示词(Prompts):
采样方法:DPM++2M SDE Karras。
迭代步数:35。
宽度:512。
高度:768。
提示词引导系数(CFG Scale):5。
CLIP 终止层数(Clip skip):2。
以上参数输入到文生图(txt2img)中,我这里的 Stable Diffusion 生成的图片如下所示:
图 LOFI 模型原始图片
这张图片乍一看感觉还不错,但是放大后仔细看会发现,它的局部有些模糊,皮肤也不如真人般有质感,这也是 AI 生成真实系的图像的会遇到的问题。
当图片的分辨率设置的比较低时,AI 没有足够多的操作空间,为你去体现那些让图片变得栩栩如生的细节。这一点在二次元图片里体现的还没有那么充分,但是在真实系图片里就暴露无疑了。
那这个问题怎么解决呢?直接扩大分辨率?NO,直接扩大分辨率有可能会爆显存,而且即便显存足够大,有很大概率会有多头、多人的问题。这个时候不妨考虑一下我们的高清修复(Hires.fix)吧!
操作方法很简单,首先固定随机种子,在文生图(txt2img)中勾选“高清修复(Hires.fix)”选项,在下拉菜单中,配置高清修复选项,如下图所示:
图 高清修复选项
以上操作完成后,点击“生成”按钮,就可以得到一张 1024×1536 的高清照片了!
在图片生成的过程中注意观察这个过程,Stable Diffusion 先会为你绘制一份低分辨率的图像,再根据它画第二幅高分辨率的图像。看到这里,是不是决定它很像图生图?其实,它的本质就是把这个低分辨率成品“图生图(img2img)”一次,使用指定的放大算法,重新去噪,从而得到一张更大的图片,我们对比一下是不是变得清晰了呢?
图 Hires.fix 图片对比
"高清修复(Hires.fix)"后获得的图片是一幅更为清晰、包含了更多细节的图片,所以你想获得更清晰的文生图大图,并且克服提高分辨率的过程中产生的多人、多头问题,就可以考虑在"文生图(txt2img)“的时候开启"高清修复(Hires.fix)”。
tips: 高清修复是一个负担比较重的效果,因为开启它的时候,画一次等于常规情况下画两到三次,耗费时间肯定更长。另外即便是高清修复也没有办法突破显存的限制,显卡能画到多大尺寸,最后还是多大。
最佳实战:
\1. 先在低分辨率下反复“抽卡”,当你确定了一个合适的画面以后,可以再固定“随机种子”,再进行“高清修复”提高分辨率,得到那个你喜欢的绘制效果差不多的结果。
\2. 另外,“高清修复(Hires.fix)”有时候会自己“加戏”,可以通过减小“重绘幅度(Denoising strength)”来解决。
\3. 和“图生图(img2img)”一样,重绘幅度太低,就容易出现边缘模糊,重绘幅度太高,例如0.7,脸就会变形,0.9就会出现“多头”。
\4. 如果,目标只是为了将图片放大,那重绘幅度安全的区间是 0.3-0.5,但如果你想赋予 AI 更多的想象力和发挥空间,那就重绘幅度就设置在 0.5-0.7 。
03
放大算法 Upscaler
放大算法列表如下图所示:
图 放大算法列表
这些算法,就像我们选择“采样算法”一样,决定了在将那个低分辨率图片“打回重画”的时候,我们要如何操作。
网上有一个说法,只要用到这个功能就无脑选择 R-ESRGAN 算法,二次元就选择 R-ESRGAN Anime6B 算法。
不过,就我测试来说,这些算法的选择,对于最终生成图的效果差别不大,选一个最稳妥的即可。对于具体模型,可以多多关注作者对模型的说明,在那里可能就会找到推荐的放大算法。
END
如果你对今天的内容有任何疑问,或者在操作过程中遇到问题,欢迎留言与我互动!别忘了分享这篇文章给你身边的朋友们,让我们一起在AI创作的世界中不断探索!
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】