【深度学习】Progressive Distillation for Fast Sampling of Diffusion Models

论文介绍了一种新的渐进式蒸馏方法,通过优化扩散模型参数并减少采样步数,显著提高GAN的推理效率。新方法在CIFAR-10等基准上展示了高生成质量,且计算成本不高于原始模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:https://arxiv.org/abs/2202.00512v2

这篇论文提出了一种"渐进式蒸馏"(Progressive Distillation)的方法,来大幅降低用于生成对抗网络(GAN)的扩散模型(Diffusion Model)在推理阶段的采样步数,从而提高其推理效率。主要贡献有:

  1. 提出了一种新的扩散模型参数化方式,使得模型在采样步数较少时也能保持稳定。
  2. 提出了一种渐进式的蒸馏算法,将原先需要几千步采样的扩散模型蒸馏成只需4步采样就能生成高质量样本的新模型。
  3. 证明了整个渐进式蒸馏过程的计算开销不会超过训练原始模型的开销,从而实现了在训练和推理阶段都高效的生成建模。
    论文在标准的图像生成基准测试上,如CIFAR-10、ImageNet和LSUN,展示了其所提方法的有效性。通过渐进式蒸馏,论文将原始需要8192步采样的模型成功蒸馏为只需4步采样就能取得接近的生成质量的新模型,大幅提高了扩散模型的推理效率。

(1)新的扩散模型参数化方式及其稳定性:
在论文中,为了提高扩散模型在使用较少采样步骤时的稳定性,提出了几种新的参数化方式。这些参数化方式包括:

  • 直接预测去噪后的样本 ( \hat{x} )。
    • 通过神经网络的两个独立输出通道分别预测样本 ( \hat{x} ) 和噪声 ( \hat{\epsilon} ),然后
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值