在生成式图像模型领域,DreamBooth 和 SDXL 微调(fine-tuning)是两种常见的模型个性化方法。虽然它们都用于增强 Stable Diffusion 的生成能力,但在具体实现和应用场景上存在显著差异。本文将详细介绍这两者的区别,帮助你根据需求选择合适的方法。
1. DreamBooth:定制化的个体训练
DreamBooth 是 2022 年由 Google 研究团队引入的一种专门的微调方法。它的主要特点是通过少量的图像(通常 3-5 张),训练模型以捕捉特定主体,如某个人物、物体或场景。通过引入一个与主体相关的唯一标识符,模型可以将该主体放置在各种不同的背景中进行生成。例如,你可以通过 DreamBooth 让模型学习特定的宠物或人物形象,然后在不同场景下生成这些图像【7†source】【8†source】。
DreamBooth 的优势在于:
- 个性化定制:通过少量数据集进行训练,能在模型中融入特定的个性化元素,如特定人物、物品等。
- 数据需求低:通常只需 3-5 张图像即可完成训练,适合资源有限的情况。
- 正则化数据集:DreamBooth 使用正则化数据集,防止模型在学习新主体时过度遗忘原有的能力