提供具有挑战性的人工智能对手是使视频游戏令人愉悦和身临其境的重要方面。 太简单或反之太难的游戏可能会让玩家感到沮丧或无聊。 动态难度调整是一种方法,旨在通过为对手提供量身定制的挑战来改进传统的难度选择方法,从而使挑战对玩家来说处于最佳水平。 这项研究使用蒙特卡洛树搜索(Monte Carlo Tree Search)方法对三种不同的动态难度调整方法进行了玩家评估,并评估了它们对玩家享受度,真实感和感知难度的影响,尤其是调查了采用不同赢/输比例的影响 通过动态难度调整,使得玩家能获得最大的欢乐。
背景
2017年,视频游戏行业的收入超过1000亿美元[24]。 为了打入这个竞争激烈的市场,开发人员需要确保他们的游戏向玩家提出正确的挑战水平,以便提供令人愉悦的游戏体验。
当前的视频游戏有很多不同的方式向玩家提出挑战。 一种做到这一点的方法是通过随着玩家的前进稳步增加游戏级别的难度。 游戏开发人员使用的另一种方法是允许玩家通过在游戏开始之前直接选择游戏难度来选择游戏难度,即“简单”,“中等”或“困难”。
尽管最初这仅允许进行一些选择,但是游戏开发者此后开发了允许更大难度设置的方法。但是,这两种方法都有许多局限性。 在游戏开始之前选择难度的情况下,玩家需要对他们在当前游戏中的当前技能水平有一些假设,以及对开发商如何将难度分配给游戏的假设。 如果这些假设不正确,则可能导致对游戏的不满意,并且取决于所讨论的游戏,一旦玩家取得了进步,切换此难度可能并不容易。 固定的难度系统也可能不包含玩家的技能水平进步,因为他们在游戏中会变得更好。
增加级别系统和固定难度的另一个局限性是两者之间的跳跃,即从一个级别转到另一个级别或从一个难度设置变为 另一个。 这个跳跃需要仔细地进行校准,因为太大的跳跃会给玩家带来太多的挑战,太大的跳跃会给玩家带来不可忽视的差异。 在这两种情况下,玩家都可能对游戏失去兴趣。 这又导致了另一个局限性,即游戏开发人员需要将所有玩家分为非常少量的不同技能水平,而这种小的分组很可能只能满足平均人数的玩家。
在早期尝试解决这些问题的过程中,动态难度调整[16]的介绍。 动态难度调整是一种方法,它使游戏对玩家的挑战级别对他们来说处于正确的水平,并随着他们的技能水平变化而进行调整。 这也允许玩家进入“沉浸”状态[11],玩家沉浸在其中。那么问题就变成了向挑战提出正确的挑战水平。
当前的动态难度调整系统趋向于将玩家的赢/输比定为50%[3],这是有充分理由的。此级别的挑战为玩家提供了一个公平的游戏。 公平游戏是来自排名系统(例如Elo [13])的概念,其中竞争游戏,公平游戏代表任一玩家同样有可能获胜。 Malone [21]在较早的著作中提出公平的游戏是有动机的,因为它在适当的难度下提供了挑战。 加上Yannakakis等人的发现[28]。 根据经验发现,当将游戏设置为对玩家的适当挑战级别时,游戏的娱乐因子最高。 对于普通视频游戏来说,将玩家的赢/输比定为50%是很有意义的。
在本文中,我们提出了三种采用MCTS的动态难度调整方法,并在2D格斗游戏中测试了这些算法,以了解游戏的乐趣,感知的难度和真实感 与anAI相比,不同方法的方面对玩家来说太困难了。 这项工作为了解如何使富有挑战性的AI对手提供了见解,尤其是Dy-Namic难度调整Agent所针对的不同赢/输比率对游戏乐趣的影响。
相关工作
游戏流程的概念对于确保玩家沉浸在游戏中至关重要。