Minimax Theorem

Minimax Theorem

本文目录


PNE or MNE

                 +----------------+----------------+
                 |    L    (q)    |    R  (1 - q)  |
+----------------+----------------+----------------+
|    U    (p)    |     a    c     |     e    g     |
+----------------+----------------+----------------+
|    D  (1 - p)  |     b    d     |     f    h     |
+----------------+----------------+----------------+

( a − b > 0 ∧ f − e > 0 ) ∨ ( a − b < 0 ∧ f − e < 0 ) (a-b > 0 \wedge f-e > 0) \vee (a-b < 0 \wedge f-e < 0) (ab>0fe>0)(ab<0fe<0) 时, 一定有 f − e a − b + f − e ∈ ( 0 , 1 ) \frac{f-e}{a-b+f-e} \in (0,1) ab+fefe(0,1).
( c − g > 0 ∧ h − d > 0 ) ∨ ( c − g < 0 ∧ h − d < 0 ) (c-g > 0 \wedge h-d > 0) \vee (c-g < 0 \wedge h-d < 0) (cg>0hd>0)(cg<0hd<0) 时, 一定有 h − d c − g + h − d ∈ ( 0 , 1 ) \frac{h-d}{c-g+h-d} \in (0,1) cg+hdhd(0,1).


收益函数和最优反应如下:

U 1 ( p , q ) = p [ q a + ( 1 − q ) e ] + ( 1 − p ) [ q b + ( 1 − q ) f ] = p [ ( a − b + f − e ) q − ( f − e ) ] + [ q ( b − f ) + f ] \begin{aligned} U_1(p, q) &= p \left[ qa + (1-q)e \right] + (1-p) \left[ qb + (1-q)f \right] \\ &= p \left[ (a-b+f-e)q - (f-e) \right] + \left[ q(b-f) + f \right] \\ \end{aligned} U1(p,q)=p[qa+(1q)e]+(1p)[qb+(1q)f]=p[(ab+fe)q(fe)]+[q(bf)+f]

{ p = { 1 , q > [ 0 , 1 ] , q = f − e a − b + f − e 0 , q < , a − b > 0 ∧ f − e > 0 p ≡ 1 , a − b > 0 ∧ f − e < 0 p = { 0 , q > [ 0 , 1 ] , q = f − e a − b + f − e 1 , q < , a − b < 0 ∧ f − e < 0 p ≡ 0 , a − b < 0 ∧ f − e > 0 p = { 0 , q < 1 [ 0 , 1 ] , q = 1 , a − b = 0 ∧ f − e > 0 p = { 1 , q < 1 [ 0 , 1 ] , q = 1 , a − b = 0 ∧ f − e < 0 p = { [ 0 , 1 ] , q = 0 1 , q > 0 , a − b > 0 ∧ f − e = 0 p = { [ 0 , 1 ] , q = 0 0 , q > 0 , a − b < 0 ∧ f − e = 0 p ≡ [ 0 , 1 ] , a − b = 0 ∧ f − e = 0 \begin{cases} &p = \begin{cases} 1, & \phantom{q} > \\ [0,1], & q = \frac{f-e}{a-b+f-e} \\ 0, & \phantom{q} < \\ \end{cases}, && a-b > 0 \wedge f-e > 0 \\ &p \equiv 1, && a-b > 0 \wedge f-e < 0 \\ &p = \begin{cases} 0, & \phantom{q} > \\ [0,1], & q = \frac{f-e}{a-b+f-e} \\ 1, & \phantom{q} < \\ \end{cases}, && a-b < 0 \wedge f-e < 0 \\ &p \equiv 0, && a-b < 0 \wedge f-e > 0 \\ &p = \begin{cases} 0, & q < 1 \\ [0,1], & q = 1 \\ \end{cases}, && a-b = 0 \wedge f-e > 0 \\ &p = \begin{cases} 1, & q < 1 \\ [0,1], & q = 1 \\ \end{cases}, && a-b = 0 \wedge f-e < 0 \\ &p = \begin{cases} [0,1], & q = 0 \\ 1, & q > 0 \\ \end{cases}, && a-b > 0 \wedge f-e = 0 \\ &p = \begin{cases} [0,1], & q = 0 \\ 0, & q > 0 \\ \end{cases}, && a-b < 0 \wedge f-e = 0 \\ &p \equiv [0, 1], && a-b = 0 \wedge f-e = 0 \\ \end{cases} p= 1,[0,1],0,q>q=ab+fefeq<,p1,p= 0,[0,1],1,q>q=ab+fefeq<,p0,p={0,[0,1],q<1q=1,p={1,[0,1],q<1q=1,p={[0,1],1,q=0q>0,p={[0,1],0,q=0q>0,p[0,1],ab>0fe>0ab>0fe<0ab<0fe<0ab<0fe>0ab=0fe>0ab=0fe<0ab>0fe=0ab<0fe=0ab=0fe=0

U 2 ( q , p ) = q [ p c + ( 1 − p ) d ] + ( 1 − q ) [ p g + ( 1 − p ) h ] = q [ ( c − g + h − d ) p − ( h − d ) ] + [ p ( g − h ) + h ] \begin{aligned} U_2(q, p) &= q \left[ pc + (1-p)d \right] + (1-q) \left[ pg + (1-p)h \right] \\ &= q \left[ (c-g+h-d)p - (h-d) \right] + \left[ p(g-h) + h \right] \\ \end{aligned} U2(q,p)=q[pc+(1p)d]+(1q)[pg+(1p)h]=q[(cg+hd)p(hd)]+[p(gh)+h]

{ q = { 1 , p > [ 0 , 1 ] , p = h − d c − g + h − d 0 , p < , c − g > 0 ∧ h − d > 0 q ≡ 1 , c − g > 0 ∧ h − d < 0 q = { 0 , p > [ 0 , 1 ] , p = h − d c − g + h − d 1 , p < , c − g < 0 ∧ h − d < 0 q ≡ 0 , c − g < 0 ∧ h − d > 0 q = { 0 , p < 1 [ 0 , 1 ] , p = 1 , c − g = 0 ∧ h − d > 0 q = { 1 , p < 1 [ 0 , 1 ] , p = 1 , c − g = 0 ∧ h − d < 0 q = { [ 0 , 1 ] , p = 0 1 , p > 0 , c − g > 0 ∧ h − d = 0 q = { [ 0 , 1 ] , p = 0 0 , p > 0 , c − g < 0 ∧ h − d = 0 q ≡ [ 0 , 1 ] , c − g = 0 ∧ h − d = 0 \begin{cases} &q = \begin{cases} 1, & \phantom{p} > \\ [0,1], & p = \frac{h-d}{c-g+h-d} \\ 0, & \phantom{p} < \\ \end{cases}, && c-g > 0 \wedge h-d > 0 \\ &q \equiv 1, && c-g > 0 \wedge h-d < 0 \\ &q = \begin{cases} 0, & \phantom{p} > \\ [0,1], & p = \frac{h-d}{c-g+h-d} \\ 1, & \phantom{p} < \\ \end{cases}, && c-g < 0 \wedge h-d < 0 \\ &q \equiv 0, && c-g < 0 \wedge h-d > 0 \\ &q = \begin{cases} 0, & p < 1 \\ [0,1], & p = 1 \\ \end{cases}, && c-g = 0 \wedge h-d > 0 \\ &q = \begin{cases} 1, & p < 1 \\ [0,1], & p = 1 \\ \end{cases}, && c-g = 0 \wedge h-d < 0 \\ &q = \begin{cases} [0,1], & p = 0 \\ 1, & p > 0 \\ \end{cases}, && c-g > 0 \wedge h-d = 0 \\ &q = \begin{cases} [0,1], & p = 0 \\ 0, & p > 0 \\ \end{cases}, && c-g < 0 \wedge h-d = 0 \\ &q \equiv [0, 1], && c-g = 0 \wedge h-d = 0 \\ \end{cases} q= 1,[0,1],0,p>p=cg+hdhdp<,q1,q= 0,[0,1],1,p>p=cg+hdhdp<,q0,q={0,[0,1],p<1p=1,q={1,[0,1],p<1p=1,q={[0,1],1,p=0p>0,q={[0,1],0,p=0p>0,q[0,1],cg>0hd>0cg>0hd<0cg<0hd<0cg<0hd>0cg=0hd>0cg=0hd<0cg>0hd=0cg<0hd=0cg=0hd=0


特别地 ¬ [ ( a − b = 0 ∧ f − e = 0 ) ∨ ( c − g = 0 ∧ h − d = 0 ) ] \neg[(a-b = 0 \wedge f-e = 0) \vee (c-g = 0 \wedge h-d = 0)] ¬[(ab=0fe=0)(cg=0hd=0)] 时, 可以画图分析如下:

best-response


统计PNE个数(即?P)和MNE个数(即?M)如下:

        +-------+-------+-------+-------+-------+-------+-------+-------+-------+
        | a-b>0 | a-b>0 | a-b<0 | a-b<0 | a-b=0 | a-b=0 | a-b>0 | a-b<0 | a-b=0 |
        |   &   |   &   |   &   |   &   |   &   |   &   |   &   |   &   |   &   |
        | f-e>0 | f-e<0 | f-e<0 | f-e>0 | f-e>0 | f-e<0 | f-e=0 | f-e=0 | f-e=0 |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g>0 |       |       |       |       |       |       |       |       |       |
|   &   | 2P 1M | 1P 0M | 0P 1M | 1P 0M | 2P #M | 1P #M | 2P #M | 1P #M | 2P #M |
| h-d>0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g>0 |       |       |       |       |       |       |       |       |       |
|   &   | 1P 0M | 1P 0M | 1P 0M | 1P 0M | 2P #M | 2P #M | 1P 0M | 1P 0M | 2P #M |
| h-d<0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g<0 |       |       |       |       |       |       |       |       |       |
|   &   | 0P 1M | 1P 0M | 2P 1M | 1P 0M | 1P #M | 2P #M | 1P #M | 2P #M | 2P #M |
| h-d<0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g<0 |       |       |       |       |       |       |       |       |       |
|   &   | 1P 0M | 1P 0M | 1P 0M | 1P 0M | 1P 0M | 1P 0M | 2P #M | 2P #M | 2P #M |
| h-d>0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g=0 |       |       |       |       |       |       |       |       |       |
|   &   | 2P #M | 2P #M | 1P #M | 1P 0M | 2P 0M | 2P #M | 3P #M | 2P #M | 3P #M |
| h-d>0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g=0 |       |       |       |       |       |       |       |       |       |
|   &   | 1P #M | 2P #M | 2P #M | 1P 0M | 2P #M | 3P #M | 2P #M | 2P 0M | 3P #M |
| h-d<0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g>0 |       |       |       |       |       |       |       |       |       |
|   &   | 2P #M | 1P 0M | 1P #M | 2P #M | 3P #M | 2P #M | 2P 0M | 2P #M | 3P #M |
| h-d=0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g<0 |       |       |       |       |       |       |       |       |       |
|   &   | 1P #M | 1P 0M | 2P #M | 2P #M | 2P #M | 2P 0M | 2P #M | 3P #M | 3P #M |
| h-d=0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
| c-g=0 |       |       |       |       |       |       |       |       |       |
|   &   | 2P #M | 2P #M | 2P #M | 2P #M | 3P #M | 3P #M | 3P #M | 3P #M | 4P #M |
| h-d=0 |       |       |       |       |       |       |       |       |       |
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

分析如下:

  • 不存在PNE

    不存在PNE(即0P)仅限于两种情形, 而这两种情形恰好是 “纯策略最优反应” 完全不重合的两种情形. 因此我们得出结论: 只要 “纯策略最优反应” 有重合, 那么就一定存在PNE; 如果 “纯策略最优反应” 不重合, 那么就不存在PNE.

    由此我们得出结论: 不存在PNE(只存在MNE)当且仅当 “纯策略最优反应” 完全不重合. 这一命题总是成立.

    以下是不存在PNE(即0P)的两种情形, 已经用中括号框出 “纯策略最优反应”.

    • ( a − b > 0 ∧ f − e > 0 ) ∧ ( c − g < 0 ∧ h − d < 0 ) (a-b > 0 \wedge f-e > 0) \wedge (c-g < 0 \wedge h-d < 0) (ab>0fe>0)(cg<0hd<0)
                       +----------------+----------------+
                       |    L    (q)    |    R  (1 - q)  |
      +----------------+----------------+----------------+
      |    U    (p)    |    [a]   c     |     e   [g]    |
      +----------------+----------------+----------------+
      |    D  (1 - p)  |     b   [d]    |    [f]   h     |
      +----------------+----------------+----------------+
      
    • ( a − b < 0 ∧ f − e < 0 ) ∧ ( c − g > 0 ∧ h − d > 0 ) (a-b < 0 \wedge f-e < 0) \wedge (c-g > 0 \wedge h-d > 0) (ab<0fe<0)(cg>0hd>0)
                       +----------------+----------------+
                       |    L    (q)    |    R  (1 - q)  |
      +----------------+----------------+----------------+
      |    U    (p)    |     a   [c]    |    [e]   g     |
      +----------------+----------------+----------------+
      |    D  (1 - p)  |    [b]   d     |     f   [h]    |
      +----------------+----------------+----------------+
      
  • 不存在MNE

    不存在MNE(即0M)没有 “覆盖整个概率测度空间” 的规律, 但是可以归纳出一些 “几乎完全覆盖整个概率测度空间” 的规律. 如果我们忽视所有 ? − ? = 0 ?-?=0 ??=0 的情形, 所有不存在MNE的情形 当且仅当 ( a − b > 0 ∧ f − e < 0 ) ∨ ( a − b < 0 ∧ f − e > 0 ) ∨ ( c − g > 0 ∧ h − d < 0 ) ∨ ( c − g < 0 ∧ h − d > 0 ) (a-b > 0 \wedge f-e < 0) \vee (a-b < 0 \wedge f-e > 0) \vee (c-g > 0 \wedge h-d < 0) \vee (c-g < 0 \wedge h-d > 0) (ab>0fe<0)(ab<0fe>0)(cg>0hd<0)(cg<0hd>0). 注意到:

    • 整个概率测度空间 Δ = Δ p × Δ q \Delta = \Delta_p \times \Delta_q Δ=Δp×Δq 是二维的, 所有等式约束相应的概率测度子空间都是一维甚至零维的, 而在二维测度空间中可数个一维或者零维子空间测度之和为零.
    • ( a − b > 0 ∧ f − e < 0 ) ∨ ( a − b < 0 ∧ f − e > 0 ) ∨ ( c − g > 0 ∧ h − d < 0 ) ∨ ( c − g < 0 ∧ h − d > 0 ) (a-b > 0 \wedge f-e < 0) \vee (a-b < 0 \wedge f-e > 0) \vee (c-g > 0 \wedge h-d < 0) \vee (c-g < 0 \wedge h-d > 0) (ab>0fe<0)(ab<0fe>0)(cg>0hd<0)(cg<0hd>0) 的实际含义依次是: U严格占优D; D严格占优U; L严格占优R; R严格占优L.

    由此我们得出结论: 不存在MNE(只存在PNE) 当且仅当 存在严格占优纯策略. 这一命题几乎总是成立. (这一命题成立的概率子空间的测度 ∣ Δ 成立 ∣ |\Delta_{\text{成立}}| Δ成立 等于 整个概率测度空间的测度 ∣ Δ ∣ |\Delta| ∣Δ∣)

    以下是忽视所有 ? − ? = 0 ?-?=0 ??=0 的情形的子表, 已经用中括号框出不存在MNE(即0M)的情形.

            +-------+-------+-------+-------+
            | a-b>0 | a-b>0 | a-b<0 | a-b<0 |
            |   &   |   &   |   &   |   &   |
            | f-e>0 | f-e<0 | f-e<0 | f-e>0 |
    +-------+-------+-------+-------+-------+
    | c-g>0 |       |   ++++|       |   ++++|
    |   &   | 2P 1M | 1P[0M]| 0P 1M | 1P[0M]|
    | h-d>0 |       |   ++++|       |   ++++|
    +-------+-------+-------+-------+-------+
    | c-g>0 |   ++++|   ++++|   ++++|   ++++|
    |   &   | 1P[0M]| 1P[0M]| 1P[0M]| 1P[0M]|
    | h-d<0 |   ++++|   ++++|   ++++|   ++++|
    +-------+-------+-------+-------+-------+
    | c-g<0 |       |   ++++|       |   ++++|
    |   &   | 0P 1M | 1P[0M]| 2P 1M | 1P[0M]|
    | h-d<0 |       |   ++++|       |   ++++|
    +-------+-------+-------+-------+-------+
    | c-g<0 |   ++++|   ++++|   ++++|   ++++|
    |   &   | 1P[0M]| 1P[0M]| 1P[0M]| 1P[0M]|
    | h-d>0 |   ++++|   ++++|   ++++|   ++++|
    +-------+-------+-------+-------+-------+
    
  • 总结如下:

    1. 不存在PNE(只存在MNE) 当且仅当 “纯策略最优反应” 完全不重合. 这一命题总是成立.
    2. 不存在MNE(只存在PNE) 当且仅当 存在严格占优纯策略. 这一命题"几乎总是成立.
    3. (推论) “纯策略最优反应” 完全不重合时, 不存在严格占优纯策略; 存在严格占优纯策略时, “纯策略最优反应” 有重合. 这一命题"几乎总是成立.
    4. (推论) “纯策略最优反应” 有重合 而且 不存在严格占优纯策略时, 既存在PNE又存在MNE. 这一命题"几乎总是成立.

NE Equivalent Condition

选取 p ∗ p^* p 使得 min ⁡ q U ( p ∗ , q ) = max ⁡ p min ⁡ q U ( p , q ) \min\limits_q U(p^*,q) = \max\limits_p \min\limits_q U(p,q) qminU(p,q)=pmaxqminU(p,q)
选取 q ∗ q^* q 使得 max ⁡ p U ( p , q ∗ ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p U(p,q^*) = \min\limits_q \max\limits_p U(p,q) pmaxU(p,q)=qminpmaxU(p,q)

max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q )    ⟹    MNE \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) \implies \text{MNE} pmaxqminU(p,q)=qminpmaxU(p,q)MNE

由于 max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q)
因此 min ⁡ q U ( p ∗ , q ) = max ⁡ p U ( p , q ∗ ) \min\limits_q U(p^*,q) = \max\limits_p U(p,q^*) qminU(p,q)=pmaxU(p,q)

  • 由于 ∀ p ∈ Δ p \forall p \in \Delta_p pΔp, U ( p , q ∗ ) ⩽ max ⁡ p U ( p , q ∗ ) = min ⁡ q U ( p ∗ , q ) ⩽ U ( p ∗ , q ∗ ) U(p,q^*) \leqslant \max\limits_p U(p,q^*) = \min\limits_q U(p^*,q) \leqslant U(p^*,q^*) U(p,q)pmaxU(p,q)=qminU(p,q)U(p,q)
    因此 p ∗ p^* p q ∗ q^* q 的最优反应

  • 由于 ∀ q ∈ Δ q \forall q \in \Delta_q qΔq, U ( p ∗ , q ) ⩾ min ⁡ q U ( p ∗ , q ) = max ⁡ p U ( p , q ∗ ) ⩾ U ( p ∗ , q ∗ ) U(p^*,q) \geqslant \min\limits_q U(p^*,q) = \max\limits_p U(p,q^*) \geqslant U(p^*,q^*) U(p,q)qminU(p,q)=pmaxU(p,q)U(p,q)
    因此 q ∗ q^* q p ∗ p^* p 的最优反应

因此 ( p ∗ , q ∗ ) (p^*,q^*) (p,q) 构成纳什均衡.

max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q )    ⟸    MNE \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) \impliedby \text{MNE} pmaxqminU(p,q)=qminpmaxU(p,q)MNE

由于 U ( p , q ) ⩽ max ⁡ p U ( p , q ) U(p,q) \leqslant \max\limits_p U(p,q) U(p,q)pmaxU(p,q)
所以 min ⁡ q U ( p , q ) ⩽ min ⁡ q max ⁡ p U ( p , q ) \min\limits_q U(p,q) \leqslant \min\limits_q \max\limits_p U(p,q) qminU(p,q)qminpmaxU(p,q)
进而 max ⁡ p min ⁡ q U ( p , q ) ⩽ min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) \leqslant \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)qminpmaxU(p,q)
亦即 min ⁡ q U ( p ∗ , q ) ⩽ max ⁡ p U ( p , q ∗ ) \min\limits_q U(p^*,q) \leqslant \max\limits_p U(p,q^*) qminU(p,q)pmaxU(p,q)

  • 由于 p ∗ p^* p q ∗ q^* q 的最优反应
    因此 ∀ p ∈ Δ p \forall p \in \Delta_p pΔp, U ( p , q ∗ ) ⩽ U ( p ∗ , q ∗ ) U(p,q^*) \leqslant U(p^*,q^*) U(p,q)U(p,q)

  • 由于 q ∗ q^* q p ∗ p^* p 的最优反应
    因此 ∀ q ∈ Δ q \forall q \in \Delta_q qΔq, U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) U(p^*,q) \geqslant U(p^*,q^*) U(p,q)U(p,q)

进而 ∀ p ∈ Δ p \forall p \in \Delta_p pΔp, ∀ q ∈ Δ q \forall q \in \Delta_q qΔq, U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) ⩾ U ( p , q ∗ ) U(p^*,q) \geqslant U(p^*,q^*) \geqslant U(p,q^*) U(p,q)U(p,q)U(p,q)
亦即 min ⁡ q U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) ⩾ max ⁡ p U ( p , q ∗ ) \min\limits_q U(p^*,q) \geqslant U(p^*,q^*) \geqslant \max\limits_p U(p,q^*) qminU(p,q)U(p,q)pmaxU(p,q)

进而 min ⁡ q U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) = max ⁡ p U ( p , q ∗ ) \min\limits_q U(p^*,q) \geqslant U(p^*,q^*) = \max\limits_p U(p,q^*) qminU(p,q)U(p,q)=pmaxU(p,q)
进而 max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q)


Minimax Theorem Proof

  • minimax 定理的形式化

    Δ p = { p ∣ p ≽ 0 , p 1 T = 1 } \Delta_p = \{p | p \succcurlyeq 0, p1^T=1 \} Δp={pp0,p1T=1}, Δ q = { q ∣ q ≽ 0 , q 1 T = 1 } \Delta_q = \{q | q \succcurlyeq 0, q1^T=1 \} Δq={qq0,q1T=1}, Δ = Δ p × Δ q \Delta = \Delta_p \times \Delta_q Δ=Δp×Δq
    U : Δ → R U: \Delta \to \reals U:ΔR, U U U 连续, 对 p p p 凹, 对 q q q
    要求证明 max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q)

    能力所限, 只考虑欧几里得空间的情形
    一般的情况, 简单列出, 不予证明

    Δ p , Δ q \Delta_p, \Delta_q Δp,Δq 是巴拿赫的空间的紧凸子集, Δ = Δ p × Δ q \Delta=\Delta_p \times \Delta_q Δ=Δp×Δq
    U : Δ → R U: \Delta \to \reals U:ΔR, U U U Δ p \Delta_p Δp 上半连续, 对 Δ q \Delta_q Δq 下半连续, 下列条件满足其一

    • U U U p p p 拟凹(quasi-convex), 对 q q q 拟凸(quasi-concave)
    • U U U p p p 类凹(convex-like), 对 q q q 类凸(concave-like)
      ∀ p 1 , p 2 \forall{p_1, p_2} p1,p2, ∀ t ∈ [ 0 , 1 ] \forall{t \in [0,1]} t[0,1], ∃ p 0 \exists{p_0} p0, t U ( p 1 , q ) + ( 1 − t ) U ( p 2 , q ) ⩽ U ( p 0 , q ) tU(p_1,q)+(1-t)U(p_2,q) \leqslant U(p_0,q) tU(p1,q)+(1t)U(p2,q)U(p0,q)
      ∀ q 1 , q 2 \forall{q_1, q_2} q1,q2, ∀ t ∈ [ 0 , 1 ] \forall{t \in [0,1]} t[0,1], ∃ q 0 \exists{q_0} q0, t U ( p , q 1 ) + ( 1 − t ) U ( p , q 2 ) ⩾ U ( p , q 0 ) tU(p,q_1)+(1-t)U(p,q_2) \geqslant U(p,q_0) tU(p,q1)+(1t)U(p,q2)U(p,q0)

    要求证明 max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q)

  • minimax 定理的证明主要有两种方法

    • 纯粹的拓扑方法, 主要使用布劳威尔不动点定理(Brouwer fixed-point theorem)
      主要证明思路是:

      1. 纳什均衡总是存在
        (直接使用纳什一九五零年初次证明纳什均衡存在性的方法, 参考 John Nash, Non-Cooperative Games, Annals of Mathematics, Vol. 54, No. 2, September, 1951)

      2. 如果纳什均衡 ( p ∗ , q ∗ ) (p^*,q^*) (p,q) 存在, 那么 max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q).

    • 纯粹的拓扑方法没有体现 minimax 问题的特殊性, 尤其没有体现 U ( p , q ) U(p,q) U(p,q) 的凹凸性, 是数学上的牛刀杀鸡, 因此数学家一直在探索尽可能初等的证明方法. 不使用布劳威尔不动点定理, 主要有两种代表性的证明方法:

      • 偏向代数的拓扑方法, 主要使用哈恩-巴拿赫定理(Hahn–Banach theorem)
        主要证明思路是:

        1. 哈恩-巴拿赫定理(Hahn–Banach theorem) ⟹ 超平面分离定理(separating hyperplane theorem) ⟹ Slater条件(Slater’s Condition)
        2. 将 minimax 定理归结为一个凸优化问题的拉格朗日强对偶性(strong duality of lagrangian)
      • 偏向分析的拓扑方法, 主要使用海涅-博雷尔定理(Heine–Borel theorem)
        主要证明思路是:

        1. 海涅-博雷尔定理(Heine–Borel theorem) ⟹ 一定条件下, 有限交集性质(finite intersection property)蕴含无穷交集性质
        2. U ( p , q ) U(p,q) U(p,q) 的水平集(level sets), 具有有限交集性质, 进而具有无穷交集性质
        3. 无穷交集的元素具有类似鞍点的性质, 这样就证明了 minimax 定理

Brouwer Fixed Point Theorem

能力所限, 只考虑欧几里得空间的情形
一般的情况, 简单列出, 不予讨论

欧几里得空间的布劳威尔不动点定理(Brouwer fixed-point theorem)
欧几里得空间的紧凸子集 X X X, 连续函数 f : X → X f: X \to X f:XX, 则 ∃ x ∈ X \exists{x \in X} xX, f ( x ) = x f(x) = x f(x)=x

欧几里得空间的布劳威尔不动点定理存在初等证明, 例如基于斯波那引理(Sperner’s lemma)的证明

欧几里得空间的角谷不动点定理(Kakutani fixed-point theorem)
欧几里得空间的紧凸子集 X X X, 映射 f : X → P ( X ) f: X \to \mathcal{P}(X) f:XP(X), f ( x ) f(x) f(x) 是非空凸集, { ( x , z ) ∣ x ∈ f ( x ) } \{(x, z) | x \in f(x)\} {(x,z)xf(x)} 是闭集, 则 ∃ x ∈ X \exists{x \in X} xX, x ∈ f ( x ) x \in f(x) xf(x)

简单列出, 不予讨论

巴拿赫空间的布劳威尔不动点定理(Brouwer fixed-point theorem)
又称勒雷-绍德尔不动点定理(Leray-Schauder fixed-point theorem)
巴拿赫的空间的紧凸子集 X X X, 连续函数 f : X → X f: X \to X f:XX, 则 ∃ x ∈ X \exists{x \in X} xX, f ( x ) = x f(x) = x f(x)=x

简单列出, 不予讨论

Δ = Δ p × Δ q \Delta=\Delta_p \times \Delta_q Δ=Δp×Δq 也是紧凸集

注意到 Δ p , Δ q \Delta_p, \Delta_q Δp,Δq 是紧凸子集, 显然

⟦ x ⟧ = { x x ⩾ 0 0 x < 0 \llbracket x \rrbracket = \begin{cases} x & x \geqslant 0 \\ 0 & x < 0 \\ \end{cases} [[x]]={x0x0x<0
( e i ) k = { 1 k = i 0 k ≠ i (e_i)_k = \begin{cases} 1 & k = i \\ 0 & k \neq i \\ \end{cases} (ei)k={10k=ik=i
ϕ i ∗ : Δ → [ 0 , + ∞ ) \phi^*_i: \Delta \to [0, +\infty) ϕi:Δ[0,+)
ϕ i p ( p , q ) = ⟦ U ( e i , q ) − U ( p , q ) ⟧ \phi^p_i(p,q) = \llbracket U(e_i, q) - U(p,q) \rrbracket ϕip(p,q)=[[U(ei,q)U(p,q)]]
ϕ i q ( p , q ) = ⟦ − U ( p , e i ) + U ( p , q ) ⟧ \phi^q_i(p,q) = \llbracket - U(p, e_i) + U(p,q) \rrbracket ϕiq(p,q)=[[U(p,ei)+U(p,q)]]
Ψ ∗ : Δ → Δ ∗ \Psi^*: \Delta \to \Delta_* Ψ:ΔΔ
[ Ψ p ( p , q ) ] i = p i + ϕ i p ( p , q ) 1 + ∑ j ϕ j p ( p , q ) [\Psi^p(p,q)]_i = \frac{p_i + \phi^p_i(p,q)}{1 + \sum\limits_{j} \phi^p_j(p,q)} [Ψp(p,q)]i=1+jϕjp(p,q)pi+ϕip(p,q)
[ Ψ q ( p , q ) ] i = q i + ϕ i q ( p , q ) 1 + ∑ j ϕ j q ( p , q ) [\Psi^q(p,q)]_i = \frac{q_i + \phi^q_i(p,q)}{1 + \sum\limits_{j} \phi^q_j(p,q)} [Ψq(p,q)]i=1+jϕjq(p,q)qi+ϕiq(p,q)
Ψ : Δ → Δ \Psi: \Delta \to \Delta Ψ:ΔΔ
Ψ ( p , q ) = ( Ψ p ( p , q ) , Ψ q ( p , q ) ) \Psi(p, q) = (\Psi^p(p,q), \Psi^q(p,q)) Ψ(p,q)=(Ψp(p,q),Ψq(p,q))

Ψ \Psi Ψ 是连续函数

连续函数有限次复合或者四则运算生成的函数仍是连续函数
⟦ ⋅ ⟧ \llbracket\cdot\rrbracket [[]], U U U, 都是连续函数
ϕ ∗ \phi^* ϕ, Ψ ∗ \Psi^* Ψ, Ψ \Psi Ψ 因此也是连续函数
特别指出 Ψ ∗ \Psi^* Ψ 的所有分母非负

如果 p p p 是一个概率分布, 那么 Ψ p ( p , q ) \Psi^p(p,q) Ψp(p,q) 也是一个概率分布
如果 q q q 是一个概率分布, 那么 Ψ q ( p , q ) \Psi^q(p,q) Ψq(p,q) 也是一个概率分布

显然

Δ \Delta Δ Ψ \Psi Ψ 存在不动点 ( p ∗ , q ∗ ) = Ψ ( p ∗ , q ∗ ) (p^*,q^*) = \Psi(p^*,q^*) (p,q)=Ψ(p,q)

注意到欧几里得空间的布劳威尔不动点定理, 显然

欧几里得空间中, 波雷尔紧(任何开覆盖存在有限开覆盖) ⟺ 自列紧(任何点列存在收敛子列) ⟺ 有界闭集
注: 紧集的根本定义是波雷尔紧

拓扑学基本定理, 不证

U U U Δ \Delta Δ 上存在最大值和最小值, 因此也存在相应的最值点

注意到紧集通过连续函数形成的像(image)仍是紧集
前文已证 Δ \Delta Δ 是紧集, 因此 Δ \Delta Δ 通过连续函数 U U U 形成的像 U ( Δ ) = { u ∣ u = U ( p , q ) , ( p , q ) ∈ Δ } U(\Delta) = \{u | u = U(p,q), (p,q) \in \Delta\} U(Δ)={uu=U(p,q),(p,q)Δ} 也是紧集
注意到 U ( Δ ) ⊆ R U(\Delta) \subseteq \reals U(Δ)R, 根据欧几里得空间波雷尔紧集和有界闭集的等价性, U ( Δ ) U(\Delta) U(Δ) 是闭区间
因此 U U U 存在最值(闭区间端点), 进而也存在相应的最值点

不动点 ⟹ 纳什均衡

使用反证法
如果 ( p ∗ , q ∗ ) (p^*,q^*) (p,q) 是不动点, 但不是纳什均衡

  • 如果存在 ∃ p + \exists{p^+} p+, U ( p + , q ∗ ) > U ( p ∗ , q ∗ ) U(p^+,q^*) > U(p^*,q^*) U(p+,q)>U(p,q)
    进而 ∃ i \exists{i} i, ϕ i p ( p ∗ , q ∗ ) > 0 \phi^p_i(p^*, q^*) > 0 ϕip(p,q)>0 (否则 U ( p + , q ∗ ) = U ( ∑ j ( p + ) j e j , q ∗ ) ⩽ U ( p ∗ , q ∗ ) U(p^+,q^*) = U(\sum\limits_{j}(p^+)_je_j,q^*) \leqslant U(p^*,q^*) U(p+,q)=U(j(p+)jej,q)U(p,q))
    进而 Ψ p ( p ∗ , q ∗ ) ≠ p ∗ \Psi^p(p^*,q^*) \neq p^* Ψp(p,q)=p
    进而 ( p ∗ , q ∗ ) (p^*,q^*) (p,q) 不是不动点, 矛盾!
  • 如果存在 ∃ q + \exists{q^+} q+, U ( p ∗ , q + ) < U ( p ∗ , q ∗ ) U(p^*,q^+) < U(p^*,q^*) U(p,q+)<U(p,q)
    进而 ∃ i \exists{i} i, ϕ i p ( p ∗ , q ∗ ) > 0 \phi^p_i(p^*, q^*) > 0 ϕip(p,q)>0 (否则 U ( p ∗ , q + ) = U ( p ∗ , ∑ j ( q + ) j e j ) ⩾ U ( p ∗ , q ∗ ) U(p^*,q^+) = U(p^*,\sum\limits_{j}(q^+)_je_j) \geqslant U(p^*,q^*) U(p,q+)=U(p,j(q+)jej)U(p,q))
    进而 Ψ q ( p ∗ , q ∗ ) ≠ q ∗ \Psi^q(p^*,q^*) \neq q^* Ψq(p,q)=q
    进而 ( p ∗ , q ∗ ) (p^*,q^*) (p,q) 不是不动点, 矛盾!

纳什均衡 ⟹ max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q)

根据 [不动点 ⟹ 纳什均衡] 我们知道:

∀ p \forall{p} p, U ( p , q ∗ ) ⩽ U ( p ∗ , q ∗ ) U(p,q^*) \leqslant U(p^*,q^*) U(p,q)U(p,q)
∀ q \forall{q} q, U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) U(p^*,q) \geqslant U(p^*,q^*) U(p,q)U(p,q)

所以

U ( p , q ∗ ) ⩽ U ( p ∗ , q ) U(p,q^*) \leqslant U(p^*,q) U(p,q)U(p,q)

由于 p , q p,q p,q 任取, 所以

max ⁡ p U ( p , q ∗ ) ⩽ min ⁡ q U ( p ∗ , q ) \max_{p} U(p,q^*) \leqslant \min_{q} U(p^*,q) maxpU(p,q)minqU(p,q)

此时, 左侧再取min, 更小, 不影响不等式; 右侧再取max, 更大, 不影响不等式

min ⁡ q ∗ max ⁡ p U ( p , q ∗ ) ⩽ max ⁡ p U ( p , q ∗ ) ⩽ min ⁡ q U ( p ∗ , q ) ⩽ max ⁡ p ∗ min ⁡ q U ( p ∗ , q ) \min_{q^*}\max_{p} U(p,q^*) \leqslant \max_{p} U(p,q^*) \leqslant \min_{q} U(p^*,q) \leqslant \max_{p^*}\min_{q} U(p^*,q) minqmaxpU(p,q)maxpU(p,q)minqU(p,q)maxpminqU(p,q)

由于 min-max >= max-min 总是成立, 而此时我们有 min-max <= max-min, 因此 min-max == max-min

注: 由于 p ∗ , q ∗ p^*,q^* p,q 实际上是 brouwer 得到的产物, 与 min-max 或者 max-min 的选取方式无关, 因此

min ⁡ q max ⁡ p U ( p , q ) ⩽ max ⁡ p U ( p , q ∗ ) \min_{q}\max_{p} U(p,q) \leqslant \max_{p} U(p,q^*) minqmaxpU(p,q)maxpU(p,q)

min ⁡ q U ( p ∗ , q ) ⩽ max ⁡ p min ⁡ q U ( p , q ) \min_{q} U(p^*,q) \leqslant \max_{p}\min_{q} U(p,q) minqU(p,q)maxpminqU(p,q)

前文写成 min ⁡ q ∗ , max ⁡ p ∗ \min_{q^*},\max_{p^*} minq,maxp只是为了方便阅读


Hahn Banach Thorem

能力所限, 只考虑欧几里得空间的情形
一般的情况, 简单列出, 不予证明

哈恩-巴拿赫定理(Hahn–Banach theorem)
X X X 是线性空间, Z Z Z X X X 的线性子空间

p : X → R p: X \to \reals p:XR 是次线性泛函, 即:

  • p ( x + y ) ⩽ p ( x ) + p ( y ) p(x+y) \leqslant p(x)+p(y) p(x+y)p(x)+p(y)
  • p ( t x ) = t p ( x ) p(tx) = tp(x) p(tx)=tp(x)

f Z : Z → R f_Z: Z \to \reals fZ:ZR 是线性泛函, 即:

  • f Z ( x + y ) ⩽ f Z ( x ) + f Z ( y ) f_Z(x+y) \leqslant f_Z(x)+f_Z(y) fZ(x+y)fZ(x)+fZ(y)
  • f Z ( t x ) = t f Z ( x ) f_Z(tx) = tf_Z(x) fZ(tx)=tfZ(x)

∀ x ∈ Z \forall{x \in Z} xZ, f Z ( x ) ⩽ p ( x ) f_Z(x) \leqslant p(x) fZ(x)p(x)

∃ f X : X → R \exists{f_X: X \to \reals} fX:XR, 是线性泛函, 而且满足:

  • ∀ x ∈ Z \forall{x \in Z} xZ, f X ( x ) = f Z ( x ) f_X(x) = f_Z(x) fX(x)=fZ(x)
  • ∀ x ∈ X \forall{x \in X} xX, f X ( x ) ⩽ p ( x ) f_X(x) \leqslant p(x) fX(x)p(x)

哈恩-巴拿赫定理直接基于佐恩引理(Zorn’s lemma)证明
注: 佐恩引理等价于选择公理(Axiom of Choice), 是数学(ZFC set theory)的公理之一

超平面分离定理(separating hyperplane theorem)
X X X 是欧几里得, W W W X X X 的凸子集, 固定任意 x 1 ∉ W x_1 \notin W x1/W
∃ ℓ : X → R \exists{\ell}: X \to \reals :XR, 是线性泛函, 而且满足:

  • ℓ ( x 1 ) = 1 \ell(x_1) = 1 (x1)=1
  • ∀ w ∈ W \forall{w \in W} wW, ℓ ( w ) < 1 \ell(w) < 1 (w)<1

固定任意 w 0 ∈ W w_0 \in W w0W, 定义 p ( x ) = inf ⁡ r { r ∣ [ w 0 + 1 r ( x − w 0 ) ] ∈ W } p(x) = \inf\limits_r\{r | [w_0 + \frac{1}{r} (x-w_0)] \in W\} p(x)=rinf{r[w0+r1(xw0)]W}
易证 p p p 次线性
定义 Z ( { x 1 } ) = { z ∣ z = t 1 x 1 + ( 1 − t 1 ) w 0 } Z(\{x_1\}) = \{z | z=t_1x_1+(1-t_1)w_0\} Z({x1})={zz=t1x1+(1t1)w0}
定义 f Z ( { x 1 } ) ( z ) = t 1 f_{Z(\{x_1\})}(z) = t_1 fZ({x1})(z)=t1, 如果 z = t 1 x 1 + ( 1 − t 1 ) w 0 z=t_1x_1+(1-t_1)w_0 z=t1x1+(1t1)w0
易证 f Z ( { x 1 } ) f_{Z(\{x_1\})} fZ({x1}) 满足要求:

  • f Z ( { x 1 } ) ( x 1 ) = 1 f_{Z(\{x_1\})}(x_1) = 1 fZ({x1})(x1)=1
  • ∀ w ∈ W ∩ Z ( { x 1 } ) \forall{w \in W \cap Z(\{x_1\})} wWZ({x1}), f Z ( { x 1 } ) ( w ) < 1 f_{Z(\{x_1\})}(w) < 1 fZ({x1})(w)<1

固定任意 x 2 ∉ W x_2 \notin W x2/W, 使得 { ( x 1 − w 0 ) , ( x 2 − w 0 ) } \{(x_1-w_0),(x_2-w_0)\} {(x1w0),(x2w0)} 线性无关
定义 Z ( { x 1 , x 2 } ) = { z ∣ z = t 2 x 2 + ( 1 − t 2 ) ( t x 1 + ( 1 − t ) w 0 ) } Z(\{x_1,x_2\}) = \{z | z=t_2x_2+(1-t_2)(tx_1+(1-t)w_0)\} Z({x1,x2})={zz=t2x2+(1t2)(tx1+(1t)w0)}
根据哈恩-巴拿赫定理, 获得 f Z ( { x 1 , x 2 } ) f_{Z(\{x_1,x_2\})} fZ({x1,x2})

  • f Z ( { x 1 } ) ( x 1 ) = 1 f_{Z(\{x_1\})}(x_1) = 1 fZ({x1})(x1)=1
  • ∀ w ∈ W ∩ Z ( { x 1 , x 2 } ) \forall{w \in W \cap Z(\{x_1,x_2\})} wWZ({x1,x2}), f Z ( { x 1 , x 2 } ) ( w ) < 1 f_{Z(\{x_1,x_2\})}(w) < 1 fZ({x1,x2})(w)<1

注: 此处的证明必须注意到

  • p ( x 1 ) = 1 p(x_1) = 1 p(x1)=1
  • ∀ w ∈ W ∩ Z ( { ⋯   } ) \forall{w \in W \cap Z(\{\cdots\})} wWZ({}), p ( w ) < 1 p(w) < 1 p(w)<1, f Z ( { ⋯   } ) ( w ) ⩽ p ( w ) < 1 f_{Z(\{\cdots\})}(w) \leqslant p(w) < 1 fZ({})(w)p(w)<1

与此同理, 扩展 Z ( { ⋯   } ) Z(\{\cdots\}) Z({}), 直到 Z ( { ⋯   } ) = X Z(\{\cdots\}) = X Z({})=X

Slater条件(Slater’s Condition)

未完待续, 参考 Stephen Boyd & Lieven Vandenberghe, “Convex Optimization” (https://web.stanford.edu/~boyd/cvxbook/), 式(5.41), 参考 Borwein M. Jonathan, “A very complicated proof of the minimax theorem” (Minimax Theory and its Applications 1.1 (2016): 21-27)

Heine Borel Theorem

能力所限, 只考虑欧几里得空间的情形
一般的情况, 简单列出, 不予证明

海涅-博雷尔定理(Heine–Borel theorem)

有限交集性质(finite intersection property) ⟹ 无穷交集性质

U ( p , q ) U(p,q) U(p,q) 的水平集(level sets), 具有有限交集性质, 进而具有无穷交集性质

未完待续, 参考 I. Joó, “A simple proof for von Neumann’s minimax theorem” (Acta Sci. Math 42 (1980): 91-94.), 参考 Bela Sz.-Nagy, “Introduction to real functions and orthogonal expansions” (https://archive.org/details/introductiontore00szok/page/40/mode/2up), 31-42页.
Minimax is a popular algorithm used in game theory and artificial intelligence to determine the optimal move for a player in a game with perfect information. It is often used in games such as chess, tic-tac-toe, and Connect Four. In C#, you can implement the Minimax algorithm by representing the game state and creating a recursive function to search through all possible moves and evaluate their outcomes. Here's a simplified example of Minimax in C#: ```csharp public int MiniMax(int[] board, int depth, bool isMaximizingPlayer) { // Base case: check if the game is over or the maximum depth is reached if (IsGameOver(board) || depth == 0) { return Evaluate(board); } if (isMaximizingPlayer) { int bestScore = int.MinValue; foreach (int move in GetPossibleMoves(board)) { int[] newBoard = MakeMove(board, move); int score = MiniMax(newBoard, depth - 1, false); bestScore = Math.Max(bestScore, score); } return bestScore; } else { int bestScore = int.MaxValue; foreach (int move in GetPossibleMoves(board)) { int[] newBoard = MakeMove(board, move); int score = MiniMax(newBoard, depth - 1, true); bestScore = Math.Min(bestScore, score); } return bestScore; } } // Example usage: int[] board = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int bestMove = -1; int bestScore = int.MinValue; foreach (int move in GetPossibleMoves(board)) { int[] newBoard = MakeMove(board, move); int score = MiniMax(newBoard, depth, false); if (score > bestScore) { bestScore = score; bestMove = move; } } Console.WriteLine("Best move: " + bestMove); ``` This is a simplified example, and you would need to implement the `IsGameOver()`, `Evaluate()`, `GetPossibleMoves()`, and `MakeMove()` functions according to the rules of your specific game. The `depth` parameter controls the depth of the search tree, determining how far ahead the algorithm looks. Adjusting this parameter can affect the algorithm's performance and the quality of the decisions it makes.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值