PCL专栏目录及须知-CSDN博客
1.原理
将点云体素化(也称为点云栅格化)之后,取每个栅格化网格的z值最低点作为特征点,组合获取结果点云。
(1)将点云体素化为一个个小的体素块
(2)取每个体素块中点云z值最低点作为该体素块特征点;组合成结果点云。
如何理解体素化:如下图,将整体点云体素化为多个小体素块,用一个个正方形的小块代表该范围内的点云
2.使用场景
实际工作中一般用于辨别、切割点云中高程不同的物体。
如下图,较高的建筑物经过栅格化抽稀,明显和附近的地面区分开(红框内即为经过滤波后辨别出的建筑物,若要提取,下一步可通过z值条件滤波等提取)。
同理,也可用来分开杆塔和草地,大树和车等东西。
3.注意事项
无
4.关键函数
(1)设置体素块的边长;
setResolution()
5.代码
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/grid_minimum.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
int main()
{
/****************栅格最低点滤波********************/
// 原始点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile("D:/code/csdn/data/JZDM.pcd", *cloud); // 加载原始点云数据
// 结果点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
//栅格最低点滤波
pcl::GridMinimum<pcl::PointXYZ> filters(0.0); // 栅格最低点滤波器
filters.setResolution(0.5); // 设置栅格边长
filters.setInputCloud(cloud);
filters.filter(*cloud_filtered);
/****************展示********************/
boost::shared_ptr<pcl::visualization::PCLVisualizer> view_raw(new pcl::visualization::PCLVisualizer("raw"));
view_raw->addPointCloud<pcl::PointXYZ>(cloud, "raw cloud");
view_raw->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "raw cloud");
boost::shared_ptr<pcl::visualization::PCLVisualizer> view_filtered(new pcl::visualization::PCLVisualizer("filter"));
view_filtered->addPointCloud<pcl::PointXYZ>(cloud_filtered, "filtered cloud");
view_filtered->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "filtered cloud");
while (!view_raw->wasStopped())
{
view_raw->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
while (!view_filtered->wasStopped())
{
view_filtered->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
return 0;
}