一文搞懂Transformer解码器(图文详解)

本文深入解析Transformer解码器,包括解码器输入、掩码多头注意力、TokenPrediction过程,以及如何利用编码器输出预测新Token,以自动生成文本。通过实例演示了Transformer在机器翻译任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列文章致力于用最简单的语言讲解Transformer架构,帮助朋友们理解它的强大,本文是第七篇:Transformer解码器图文详解

本系列之前的两篇文章:Transformer输入详解Transformer自注意力机制图文详解,我们已经用图示和代码形式讲解了Transformer架构的编码器部分,接下来,我们开始讲解解码器部分。

01 解码器(Decoder)

到目前为止,通过前面的两篇文章,我们已经完成了编码器部分的所有计算步骤,从对数据集进行编码到通过前馈网络传递矩阵;接下来的步骤,我们将讲解Transformer的编码器,如下是在GPT中Transformer编码器预测Token的演示动图。

图片

我们看一下到目前为止我们已经完成了哪些内容,以及我们还需要完成哪些内容:

图片

我们不会计算整个解码器,因为它的大部分已经在编码器中完成了类似的计算,详细计算解码器只会使文章变得冗长,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值