什么是大模型微调技术,为什么要进行微调?

在红衣大叔周鸿祎看来,2024年是大模型的场景之年。他曾说。“如果有1万家企业寻找了1万个场景,开发了1万个专业大模型,大模型就真的能在中国遍地开花、进入百行千业,大模型的成本就会从高昂的‘原子弹’转变为人人可负担的‘茶叶蛋’,AI引发的新一轮工业革命就可能在中国率先实现。”

做全量大模型的成本不是一般企业能承受的起的,用周鸿祎自己的话换一种说法就是:“我们要对大模型有要求,但不能要求它又能写诗,又能绘画,又能解奥数题,还是要让它瞄准企业里的专项场景,解决专项问题。如此一来,大模型的要求更为专业、精准,其所需参数随之降低,也会带来成本的降低。”

专业模型不需要从头训练,而是在通用大模型的基础上,加上垂直场景和内部专有知识打造而成。

说了这么多,今天AI科普小站要给大家介绍的知识点就是大模型微调技术。因为就是通过它,可以让周总上面说的话变成现实的关键技术。大大的节约成本,让中小企业也有可能用上大模型。

那什么叫大模型微调呢?

就是在已经训练好的大型语言模型上,再用一些特定数据集继续训练,让它更懂你的任务或领域。咱们就好像是给一个大杂烩加点新料,让它更贴合你的需求。

为啥要搞大模型微调呢?

因为虽然有了预训练模型,也能干很多事,比如回答问题、整理数据、编程什么的。但是总有些问题,尤其是那些行业内专业问题,或者公司内部的事情,这些通用模型可解决不了。这时候,就得用上特定的数据集,给合适的基础模型来一次微调,才能应付特殊任务和问题。

微调有两种大招:

一、全微调(Full Fine-tuning):就是对整个预训练模型来个全套改造,包括所有的模型参数。这种招式适合任务和预训练模型之间相差大的情况,或者任务要求模型超级灵活自适应的时候。虽然这招消耗资源多,时间也长,但效果杠杠的。

二、部分微调(Repurposing):这个招式就是只调整模型的上层或者少数几层,底层参数不动。这招适合任务和预训练模型比较相似,或者数据集不大的情况。因为只动少数层,所以资源消耗少,速度快,不过有时候效果可能差点。

选用全微调还是部分微调,要看任务性质和手头资源。如果任务跟预训练模型差距大,或者要求模型特别灵活,那全微调最合适。如果任务和预训练模型比较像,或者资源不多,那部分微调更省事。最终选择要看具体情况和试验结果,找到最适合自己的方法。

微调的两种类型:

1、监督微调(Supervised Fine-tuning):

就是用有标签的训练数据集进行微调。这些标签告诉模型在微调中应该怎么做。比如分类任务,每个样本都有对应的标签。用这些标签指导模型微调,可以让它更适应具体任务。

2、无监督微调(Unsupervised Fine-tuning):这个就是用无标签的训练数据集进行微调。也就是模型只能看数据,不知道啥是对啥是错。这种方法通过学习数据内在结构或者生成数据,来提取有用特征或者改善模型表示能力。

监督微调就是直接在有标签的数据上搞活模型,所以能直接提升模型表现。无监督微调就是利用数据特征和表示,提取更有用的东西。这两种方法可以单独用,也可以一起搞,得看任务和数据的特点。

大模型微调有个大概的流程,虽然每个方法可能细节有点不同,但基本步骤都是差不多的:

1.准备数据集:找到和任务相关的数据,保证数据质量和标签准确,然后做好清洗和预处理。

2.选模型:根据任务和数据,选一个合适的预训练模型。

3.定策略:根据任务需求和资源,选择合适的微调策略,是全改还是局部改,以及改哪些部分。

4.设参数:确定超参数,比如学习率、批大小、训练轮数等,这些对微调效果影响很大。

5.初始化模型参数:根据预训练模型初始化微调模型参数,全改的话都要重置;局部改的话只改顶层或者几层。

6.训练模型:用准备好的数据和策略,开始训练模型。按照设定的超参数和优化算法,调整参数降低损失。

7.评估和调优:训练过程中,用验证集评估模型,根据结果调整超参数或者策略。这能提高模型表现和泛化能力。

8.测试性能:微调完了,用测试集评估最终模型性能,看看实际效果怎么样。

9.部署和使用:把调好的模型投入实际应用,再做些优化和调整,以适应实际需求。

这些步骤基本能给你个微调的流程,当然具体情况可能有所不同,得灵活调整。不过,虽然微调省事,但也要有经验、技术和资源才行,要不然谁叫你玩呢?

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

模型微调(Fine-tuning)通常是指对预训练大型通用模型(如BERT、GPT系列)进行适应性调整的过程,以便让模型更好地适用于特定任务或领域。以下是大模型微调的一般步骤: 1. **加载预训练模型**:首先从已有的大规模训练数据上预训练好的模型库中下载并加载模型。 2. **准备任务数据**:针对具体的任务收集或准备适合微调的数据集,比如情感分析的文本数据、问答系统的QA对等。 3. **分割数据**:将数据分为训练集、验证集和测试集,用于模型的训练和性能评估。 4. **标记化**:使用模型所期望的输入格式对数据进行处理,将其转换成模型可以理解的形式,例如把文本转换成词嵌入。 5. **微调**:在预训练模型的基础上,只更新部分或全部层的权重,开始在新的任务数据集上进行训练。这个过程通常使用较小的学习率,并通过反向传播来优化模型。 6. **验证与监控**:定期在验证集上评估模型性能,防止过拟合,如果性能不佳,可能需要调整学习率、增加训练时间或尝试其他改进策略。 7. **保存和部署**:当模型在验证集上的性能达到预期,就可以将它保存下来并在实际应用中部署。 举例来说,假如我们要微调一个预训练的GPT模型进行诗歌生成,我们会加载GPT模型,然后使用包含大量诗词的数据集进行训练,让模型学会理解和生成诗歌的韵律和风格。最终,我们可以获得一个专长于诗歌创作的定制模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值