自主部署和运行大语言模型Llama3的5种方法

Meta 最近发布了Llama 3,这是其开源大型语言模型(LLM)的最新和最强大的版本。Llama3包括两个版本:Llama 3 8B(含80亿个参数)和 Llama 3 70B(含700亿个参数),这两个版本都有基础和指令调整变体。

与Llama 2相比,Llama 3模型降低了错误拒绝率,提供了双倍的上下文长度,具有 8K 标记上下文窗口。Llama 3 模型的训练数据比 Llama 2 多出约 8 倍,在24000个GPU卡上,使用了超过 15 万亿个token的新的公开在线数据组合。HumanEval的大模型代码能力评测对比结果中,作为开源模型的Llama3得分为81.7分,高于闭源商业模型Gemini Pro 1.5(71.9分)和Claude 3 Sonnet(73分),低于Claude 3 Opus (84.9分) 和GPT4 Turbo (85.7分)。

本文介绍5种安装和运行Llama3的方法,供参考。

  1. 使用Web浏览器部署和运行模型

该方法使用WebGPU技术在Web浏览器运行模型,不需要网络和服务器端支持。

  • WebLLM

这是一个使用WebGPU和WebAssembly等技术的项目,能够完全在浏览器中运行大语言模型和大语言模型应用程序。WebLLM 是一个模块化和可定制的 javascript 软件包,可直接将语言模型聊天直接带入Web浏览器,并进行硬件加速。一切都在浏览器内运行,无需服务器支持,并通过 WebGPU 加速。同时还支持在手机上运行模型。

Demo: https://mlc.ai/mlc-llm/

WebLLM技术架构

🔗 https://github.com/mlc-ai/web-llm

  • Secret Llama

完全私有的大语言模型聊天机器人,完全通过浏览器运行,支持离线运行,无需服务器。目前支持 Mistral 和 LLama 3。

🔗 https://github.com/abi/secret-llama

2. 使用Ollama+LangChain+streamlit构建模型聊天机器人

Ollama 是一个基于 Go 语言开发的简单易用的本地大语言模型部署和运行开源框架。可以将其类比docker包实现命令行交互中的 list,pull,push,run 等命令)。它将模型权重、配置和数据捆绑到一个包中,优化了设置和配置细节,包括 GPU 使用情况,从而简化了在本地运行大型模型的过程。Ollama 支持多种模型,如Llama 2/3、Code Llama、Mistral、Gemma 等,并允许用户根据特定需求定制和创建自己的模型。

🔗 https://ollama.com/

LangChain是一个开源框架,旨在帮助开发人员使用语言模型构建端到端的应用程序。它提供了一套工具、组件和接口,可简化创建由大语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以让AI开发人员把大型语言模型和外部自定义数据结合起来。它提供了PythonJavaScript(TypeScript) 的包。

🔗 https://github.com/langchain-ai/langchain

Streamlit是一个开源的 Python 库,允许开发人员快速创建交互式 Web 应用程序。它提供了一种简单直观的方法来构建数据可视化工具、机器学习应用程序和交互式仪表板。Streamlit 的主要功能之一是它能够创建响应式用户界面,这些界面会随着用户与应用程序的交互而实时更新。这使其成为构建聊天机器人和其他对话界面的理想选择。🔗 https://github.com/streamlit/streamlit

具体步骤如下:

  • 安装Ollama,拉取Llama3 8B模型,运行模型

  • 使用LangChain链接模型、提示词和数据

  • 使用streamlit创建聊天机器人交互式应用程序

3. 使用LM Studio在本地运行Llama3

LM Studio 是一个可以在本地运行大语言模型的免费桌面端软件,支持MacOS、Windows和Linux操作系统。它支持在本地发现、下载和执行大语言模型,具有内置聊天界面以及与类似 OpenAI 的本地服务器的兼容性。通常被认为比 Ollama的界面更友好,LM Studio 还提供了更多来自 Hugging Face 等地方的模型选项,支持Llama 3、Phi 3、Falcon、Mistral、StarCoder、Gemma等模型。

🔗 https://lmstudio.ai/

4. 使用4GB单卡GPU运行Llama3 70B模型

Llama3 70B 大型语言模型的参数大小为130GB。仅将模型加载到 GPU 中就需要 2 个 A100 GPU,每个 100GB 内存。

在推理过程中,还需要将整个输入序列加载到内存中,以进行复杂的 "注意力 "计算。这种注意力机制的内存需求与输入长度成四次方关系。除了 130GB 的模型大小外,还需要更多的内存。

开源项目AirLLM优化了模型推理内存的使用,允许 70B 大型语言模型在一块 4GB GPU 显卡上运行推理。无需量化、蒸馏、剪枝或其他会导致模型性能下降的模型压缩技术。

🔗 https://github.com/lyogavin/Anima/tree/main/air_llm

5. 使用免费在线AI平台运行Llama3模型

  • Hugging Chat

HuggingChat 是 HuggingFace 开发的开源聊天机器人界面,用于与大型语言模型互动。要测试运行Llama,可以使用HuggingChat,登录或创建一个免费账户,然后在 "当前模型 "下选择 "Meta-Llama-3-70B-Instruct "模型。

🔗 https://huggingface.co/chat/

  • Perplexity Labs

Perplexity Labs 是 Perplexity AI 的一个部门,它为开发人员提供了一个测试各种大型语言模型的实验场。

它提供了一个用户友好的界面,你可以选择 llama-3-70b-instruct 或 llama-3-8b-instruct 模型,并立即开始互动。

Perplexity Labs 的一大亮点是其慷慨的token限制。对于 llama-3-70b-instruct 模型,请求率限制为每 5 秒 20 个请求、每分钟 60 个请求和每小时 600 个请求。该模型的令牌率限制为每分钟 40,000 个令牌和每 10 分钟 160,000 个令牌。llama-3-8b-instruct 模型的请求速率限制为每 5 秒 20 个请求、每分钟 100 个请求和每小时 1000 个请求。令牌速率限制为每 10 秒 16,000 个令牌、每分钟 160,000 个令牌和每 10 分钟 512,000 个令牌。这对于广泛测试 Llama 3 的能力绰绰有余。

🔗 https://labs.perplexity.ai/

  • Vercel Chat

Vercel Chat 可免费运行两个Llama 3版本。用户可以与两个或多个模型并排聊天,比较响应质量和令牌使用情况。这样就可以非常方便地将 Llama 3 与其他领先的人工智能模型进行直接比较。

🔗 https://sdk.vercel.ai/

  • Replicate

Replicate 为人工智能实验提供了一个简单实用的界面。您也无需创建账户,就可以立即与这些模型对话。

Llama 3 8B: https://replicate.com/meta/meta-llama-3-8b

Llama 3 70B: https://replicate.com/meta/meta-llama-3-70b

  • Meta AI Web

在Meta AI官网运行Llama3,另外还可以通过Facebook、Instagram、WhatsApp、Messenger等软件使用该模型。

🔗 https://www.meta.ai/

  • Cloudflare

Cloudflare官方出品,可以免费在线运行开源大模型的平台 ,亮点是不用注册,连注册按钮都没有,直接用。

🔗 https://playground.ai.cloudflare.com

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值