1. 感知机(Perceptron)⭐️⭐️
前排提示,文末有大模型AGI-CSDN独家资料包哦!
- 重要性:基础模型,有助于理解神经网络的基本概念。
- 特点:最基本的神经网络模型,适用于线性分类任务。
- 应用:用于理解神经网络的基本概念和训练过程。
2. 前馈神经网络(Feedforward Neural Network, FNN)⭐️⭐️⭐️
- 重要性:神经网络的基础架构,理解深度学习的基本工作原理。
- 特点:基础的神经网络架构,包含多个隐藏层,每层的神经元连接到下一层的所有神经元。
- 应用:用于处理结构化数据和简单的分类或回归任务。
3. 卷积神经网络(Convolutional Neural Network, CNN)⭐️⭐️⭐️⭐️⭐️
- 重要性:在图像处理领域极其重要,几乎是所有图像相关任务的基础。
- 特点:专门用于处理图像数据,通过卷积层提取特征
- 应用:图像分类、物体检测、图像分割等。
- 代表模型:LeNet、AlexNet、VGG、ResNet、Inception。
4. 循环神经网络(Recurrent Neural Network, RNN)⭐️⭐️⭐️
- 重要性:处理序列数据的关键技术,尽管Transformer模型已经广泛使用,RNN和其变体仍在许多时间序列任务中发挥作用。
- 特点:适用于处理序列数据,能够处理时间序列中的上下文信息。
- 应用:自然语言处理、时间序列预测、语音识别等。
- 代表模型:标准RNN、LSTM(长短期记忆网络)、GRU(门控循环单元)。
5. Transformer⭐️⭐️⭐️⭐️⭐️
- 重要性:现代自然语言处理的核心模型,对深度学习和NLP领域的影响深远。
- 特点:基于自注意力机制,能够处理长距离依赖和并行计算。
- 应用:自然语言处理任务,如机器翻译、文本生成、文本分类等。
- 代表模型:BERT、GPT、T5、Transformer-XL。
生成对抗网络(Generative Adversarial Network, GAN)⭐️⭐️⭐️⭐️
- 重要性:在生成模型和图像处理领域具有广泛的应用。
- 特点:包括生成器和判别器两个网络,通过对抗训练生成新数据。
- 应用:图像生成、风格迁移、数据增强等。
- 代表模型:DCGAN、StyleGAN、CycleGAN。
7. 自编码器(Autoencoder)⭐️⭐️⭐️
- 重要性:用于无监督学习、降维和特征学习。
- 特点:用于数据压缩和降维,通过重建输入数据进行训练。
- 应用:特征提取、降噪、图像压缩。
- 代表模型:经典自编码器、变分自编码器(VAE)。
8. 图神经网络(Graph Neural Network, GNN)⭐️⭐️⭐️⭐️
- 重要性:处理图结构数据的重要工具,应用领域逐渐扩大。
- 特点:用于处理图结构数据,通过节点之间的连接关系进行学习。
- 应用:社交网络分析、推荐系统、分子结构分析。
- 代表模型:GCN(图卷积网络)、GAT(图注意力网络)。
9. 深度强化学习(Deep Reinforcement Learning)⭐️⭐️⭐️
- 重要性:结合深度学习和强化学习,适用于复杂决策问题和自主系统。
- 特点:结合深度学习和强化学习,能够处理复杂的决策问题。
- 应用:游戏智能体、机器人控制、自主驾驶。
- 代表模型:DQN(深度Q网络)、A3C(异步优势演员评论家)、PPO(近端策略优化)。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓