使用官方默认的Pytorch安装方式真的是让人等待,急坏了多少人,真的是太慢了,采用conda换源的方式有的时候也不顶用,仍然很慢,现在采用一种超极速的方式秒装Pytorch系列方式,且在Conda环境内部预装测试Cuda和CuDNN,无需再次安装。
本文以ubuntu系统举例,windows系统操作类似
1.确保已经安装好anaconda环境
创建并启动anaconda环境
conda create -n demo python=3.10 # 可以采用任意python=3.x的版本 demo是环境名称
conda activate demo
2.打开Pytorch官方网站
点击 Pytorch 进入到页面,进入到先前版本页面
3.确定自己需要安装的版本
例如,这里我在linux-ubuntu系统中,需要安装 pytorch 2.3.1 版本,采用pip安装的方式,确定具体版本号,比如 torch==2.3.1 ,torchvision==0.18.1 ,torchaudio==2.3.1,cuda为11.8
4.手动下载torch,torchvision,torchaudio文件
打开下载网站 文件下载
CTRL+F搜索上述版本例如:cu118/torch-2.3.1
torch :找到正确的版本和操作系统点击下载
其中
cu118指的是cuda11.8版本
cp310指的是python3.10版本
linux值得是linux系列系统(ubuntu系统)
win值得是windows系统
注意区分windows系统和linux系统,下载需要的
找到 torchvision 0.18.1版本点击下载
找到 torchaudio 2.3.1版本点击下载
如果是计算机视觉任务,可忽略torchaudio步骤下载
将以上文件下载后,进入到文件下载位置,采用pip方式一键快速安装
pip install "torch-2.3.1+cu118-cp310-cp310-linux_86_64.whl"
pip install "torchvision-0.18.1+cu118-cp310-cp310-linux_86_64.whl"
5. 验证安装
极速安装成功!
6.Conda环境内的Cuda和CuDNN 测试
因为我们刚才安装的是 torch-2.3.1+cu118,
此时,pytorch内部已经提供了所需要的Cuda和CuDNN,相关文档已经做过解释
PyTorch 安装中的 CUDA 与 NVIDIA CUDA Toolkit 的区别
一篇文章理清GPU、CUDA、CUDA Toolkit、cuDNN的关系
所以我们无需再次安装,直接测试一下就行。
conda activate demo
python
import torch
torch.version.cuda
torch.backends.cudnn.version()
torch.cuda.is_available()
可以看到,conda虚拟环境内部,pytorch已经提供安装了Cuda 11.8版本和CuDNN 8.7.0版本,并且cuda显示为True,可以成功调用!此时无需再独立安装Cuda和CuDNN,可以直接用于训练。