超极速安装Pytorch和Torchvision及Conda环境内的Cuda和CuDNN理解

使用官方默认的Pytorch安装方式真的是让人等待,急坏了多少人,真的是太慢了,采用conda换源的方式有的时候也不顶用,仍然很慢,现在采用一种超极速的方式秒装Pytorch系列方式,且在Conda环境内部预装测试Cuda和CuDNN,无需再次安装。

本文以ubuntu系统举例,windows系统操作类似

1.确保已经安装好anaconda环境

创建并启动anaconda环境

conda create -n demo python=3.10 # 可以采用任意python=3.x的版本 demo是环境名称
conda activate demo
2.打开Pytorch官方网站 

点击 Pytorch 进入到页面,进入到先前版本页面

3.确定自己需要安装的版本

例如,这里我在linux-ubuntu系统中,需要安装 pytorch 2.3.1 版本,采用pip安装的方式,确定具体版本号,比如 torch==2.3.1 ,torchvision==0.18.1 ,torchaudio==2.3.1cuda为11.8

4.手动下载torch,torchvision,torchaudio文件

打开下载网站 文件下载

CTRL+F搜索上述版本例如:cu118/torch-2.3.1

torch :找到正确的版本和操作系统点击下载

其中

cu118指的是cuda11.8版本

cp310指的是python3.10版本

linux值得是linux系列系统(ubuntu系统)

win值得是windows系统

注意区分windows系统和linux系统,下载需要的

找到 torchvision 0.18.1版本点击下载

找到 torchaudio 2.3.1版本点击下载

如果是计算机视觉任务,可忽略torchaudio步骤下载

将以上文件下载后,进入到文件下载位置,采用pip方式一键快速安装

pip install "torch-2.3.1+cu118-cp310-cp310-linux_86_64.whl"

pip install "torchvision-0.18.1+cu118-cp310-cp310-linux_86_64.whl"
5. 验证安装

极速安装成功!
6.Conda环境内的Cuda和CuDNN 测试

因为我们刚才安装的是 torch-2.3.1+cu118,

此时,pytorch内部已经提供了所需要的Cuda和CuDNN,相关文档已经做过解释

PyTorch 安装中的 CUDA 与 NVIDIA CUDA Toolkit 的区别

一篇文章理清GPU、CUDA、CUDA Toolkit、cuDNN的关系

所以我们无需再次安装,直接测试一下就行。

conda activate demo
python
import torch
torch.version.cuda
torch.backends.cudnn.version()
torch.cuda.is_available()

可以看到,conda虚拟环境内部,pytorch已经提供安装了Cuda 11.8版本和CuDNN 8.7.0版本,并且cuda显示为True,可以成功调用!此时无需再独立安装Cuda和CuDNN,可以直接用于训练。

### 解决 Conda 安装 torchvision 失败的方法 当遇到 `conda` 安装 `torchvision` 失败的情况时,可以尝试多种方法来解决问题。以下是几种有效的解决方案: #### 方法一:使用国内镜像源加速安装 有时官方源的速度较慢或不稳定,这可能导致安装失败。通过配置国内镜像源能够显著提高下载速度并减少错误发生的可能性。 ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ ``` 此命令会将清华镜像源添加到渠道列表中[^4]。 #### 方法二:移除特定版本约束重新安装 如果指定版本的包无法正常获取,则可以从命令中去掉具体的版本号限制再试一次。 ```bash conda install pytorch torchvision torchaudio ``` 这样可以让 `conda` 自动选择最适合当前环境的最佳匹配版本[^2]。 #### 方法三:离线安装预下载好的 tar 文件 对于网络条件较差的情况下,可以选择提前从其他设备上下载好所需的 `.tar.bz2` 文件,并将其放置于本地路径下进行安装操作。 ```bash conda install --use-local /path/to/local/package/file.tar.bz2 ``` 请注意替换 `/path/to/local/package/file.tar.bz2` 为实际文件所在位置[^3]。 #### 方法四:更新 conda mamba 工具链 保持工具本身的最新状态有助于避免因软件缺陷引起的各种异常情况发生。 ```bash conda update -n base conda conda install mamba -c conda-forge mamba init ``` 以上措施能有效提升依赖解析效率以及稳定性[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值