AI大模型探索之路-应用篇11:AI大模型应用智能评估(Ragas)

目录

前言

一、为什么要做智能评估?

二、Ragas是什么?

三、Ragas使用场景

四、Ragas评估指标

五、Ragas代码实践

总结


前言

随着人工智能技术的飞速发展,AI大模型(LLM)已经成为了推动技术创新和应用的关键因素。这些大模型在语言理解、图像识别、自然语言生成等领域展现出了惊人的能力。然而,随着模型规模的增大,它们对计算资源的消耗、环境适应性、模型稳定性、安全性和可解释性等方面也提出了新的挑战。因此,对AI大模型进行智能评估变得至关重要,以确保它们在实际应用中的稳定性、可靠性和有效性。本文将详细介绍Ragas框架,一个专为AI大模型设计的智能评估工具。



一、为什么要做智能评估?

AI大模型的复杂性和规模使得传统的评估方法不再适用。这些模型通常包含数亿甚至数万亿个参数,这使得它们能够在各种复杂的任务中取得出色的表现。然而,这也带来了以下问题:
1. 计算资源消耗:大模型的训练和推理过程需要大量的计算资源,这可能导致昂贵的成本和环境影响。
2. 环境适应性:模型在不同环境和数据分布下的表现可能会有所不同,这可能影响其适用性。
3. 模型稳定性:面对异常输入或长时间运行,模型的稳定性成为关注的重点。
4. 安全性和隐私:模型可能会泄露训练数据中的敏感信息,或者生成不当内容。
5. 可解释性:由于模型的复杂性,解释模型的决策过程对于某些应用来说是难以接受的。

因此,对AI大模型进行全面的智能评估是确保其在实际应用中稳定性、可靠性和有效性的关键步骤。

二、Ragas是什么?

Ragas(Retrieval-Augmented Generation, RAG)框架是一个综合性的智能评估工具,它专为AI大模型设计,用于评估模型的性能、适用性、稳定性、安全性和可解释性等多个维度。Ragas的主要目标是为开发者、研究人员和决策者提供一个全面的评估工具,以帮助他们了解模型的优势和潜在的风险。


Ragas的功能特点包括:
1. 模块化设计:采用模块化设计,用户可根据具体的评估需求灵活地选择和组合不同的评估模块。
2. 自动化流程:提供自动化的评估流程,减少了人工干预的需求,提高了评估的效率和一致性。
3. 多维度评估:支持从多个维度对AI模型进行评估,包括性能、适用性、稳定性和可解释性等。
4. 用户界面:提供有直观的用户界面,使得用户设置评估参数、启动评估过程并查看评估结果。
5. 基准测试:Ragas可以与预定义的基准模型进行比较,评估AI模型的性能。
6. 适用性分析:Ragas能够分析模型在不同数据集上的适用性,识别模型的泛化能力。
7. 压力测试:Ragas可以模拟高负载情况下的模型表现,评估其稳定性。
8. 安全审计:Ragas检测模型是否存在潜在的安全风险,如数据泄露风险。
9. 可解释性分析:Ragas提供模型决策的解释,帮助用户理解模型的行为。

三、Ragas使用场景

Ragas适用于多种AI大模型的应用场景,包括但不限于:
1. 自然语言处理:Ragas可以用于评估文本分类、机器翻译、情感分析等任务的模型。
2. 图像识别:Ragas可以用于评估图像分类、目标检测、风格迁移等任务的模型。
3. 语音处理:Ragas可以用于评估语音识别、语音合成等任务的模型。

使用Ragas的场景通常是在模型开发和部署的关键环节,例如:
1. 模型选择:在选择合适的模型时,可以使用Ragas来评估不同模型的性能和适用性。
2. 模型优化:在模型开发过程中,可以使用Ragas来监控模型的表现,并根据评估结果进行优化。
3. 风险管理:在模型部署前,可以使用Ragas来评估模型的安全性和稳定性,以减少潜在的风险。

四、Ragas评估指标

Ragas提供了专门针对不同类型的embeddings的评估方法,例如对主流的OpenAI embeddings和BGE (Big Generative Models) embeddings等进行评估。此外,Ragas还提出了五种评估指标,包括忠实度、答案相关性、上下文精度、上下文召回率和上下文相关性,这些指标旨在量化评估检索增强生成(Retrieval-Augmented Generation, RAG)流程的性能。因此它特别适用于评估RAG应用。通过测量查询、检索到的上下文以及语言模型生成的回答之间的相关性来评估RAG的有效性。这种评估方法不需要访问人工注释的数据集或参考答案,使得评估过程更为简便和高效。
Ragas的五大评估指标
1)忠实度(Faithfulness):
数据范围:(0, 1)
判断标准:越高越好。
指标含义:忠实度衡量生成的答案与给定上下文的事实一致性。如果答案中的所有基本事实都可以从上下文中推断出来,则认为答案是忠实的。这意味着答案在内容上没有与上下文相矛盾的地方。
问题参考:Q: 请描述一种健康饮食的建议。
正面样例:A: 健康饮食建议包括多吃水果、蔬菜、全谷物,减少糖分和加工食品的摄入。
反面样例:A: 健康饮食建议包括吃快餐和糖果,完全避免蔬菜和水果。

2)答案相关性(Answer Relevancy):
数据范围:(0, 1)
判断标准:越高越好。
指标含义:答案相关性评估生成的答案与问题的相关性。一个高相关性的答案意味着它直接且准确地回答了问题。
问题参考:Q: 谁是《哈姆雷特》的作者?
正面样例:A: 威廉·莎士比亚是《哈姆雷特》的作者。
反面样例:A: 《哈姆雷特》是一部科幻小说。

3)上下文精度(Context Precision):
数据范围:(0, 1)
判断标准:越高越好。
指标含义:上下文精度评估检索到的上下文与问题和答案的相关程度。高上下文精度意味着检索到的上下文信息与问题紧密相关,对于生成答案有帮助。
问题参考:Q: 根据以下上下文,皮特下一步应该做什么?他正在厨房里准备晚餐,炉子上有一锅炖菜。
正面样例:A: 皮特下一步应该检查炖菜是否煮熟。
反面样例:A: 皮特下一步应该去洗车。

4)上下文召回率(Context Recall)
数据范围:(0, 1)
判断标准:越高越好
指标含义:上下文召回率评估在生成答案时使用的上下文信息是否全面。高上下文召回率表明RAG系统能够检索出与问题相关的大部分上下文信息。
问题参考:Q: 昨天你提到了哪些电影?
正面样例:A: 昨天我提到了《教父》、《泰坦尼克号》和《阿凡达》。
反面样例:A: 昨天我提到了《教父》。

5)上下文相关性(Context Relevance)
数据范围:(0, 1)
判断标准:越高越好。
指标含义:上下文相关性衡量输入查询、检索上下文和LLM生成的响应之间的相关性。这个指标有助于评估RAG系统的整体性能,即各个组件如何协同工作以产生准确的答案。
问题参考:Q: 你昨天提到的电影中,哪一部赢得了奥斯卡最佳影片奖?
正面样例:A: 《教父》赢得了奥斯卡最佳影片奖。
反面样例:A: 《阿凡达》赢得了奥斯卡最佳动画长片奖。

通过这些指标,Ragas框架能够为RAG系统提供一个全面的评估,帮助开发者和研究人员理解系统的表现,并指导他们进行进一步的优化和改进。这些指标的设计旨在不需要访问人工注释的数据集或参考答案,使得评估过程更为简便和高效。
注意:在某些特殊情况下,这些指标之间的权衡可能会导致不同的结论。例如,如果一个模型在提高上下文精确度(Context Precision)的同时可能就会降低了上下文召回率(Context Recall),因此实际应用中,需要根据具体情况来判断哪个指标更关键。

五、Ragas代码实践

1)安装依赖
pip install ragas==0.0.22
注意:安装0.0.22版本,不要安装最新的ragas,ragas的新版本和Langchain暂不兼容

2)导入依赖、定义模型

from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import RetrievalQA
import  os
import openai
import  time

openai.api_key = os.getenv("OPENAI_API_KEY")

#定义模型
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

3)准备本地文档资料,用作测试样本

#准备本地文档资料,即测试样本
doc_list = """
1. 美国总统是谁?
   拜登
2. 印度人吃饭的工具是什么?
   右手
3. CBA是什么?
   CBA是指中国男子篮球职业联赛(China Basketball Association),这是中国最高等级的篮球联赛
4. 佛教起源哪里?
   古印度
5. 美国的职业篮球赛叫什么?
   NBA,全称为National Basketball Association,中文名为美国职业篮球联赛,是北美地区的最高等级职业篮球赛事
"""

4)将文档分割成小块,存储到向量数据库

#文档拆分分块
text_spliter = CharacterTextSplitter(separator="\n",
                                     chunk_size=500,
                                     chunk_overlap=50,
                                     length_function=len)
chunks = text_spliter.split_text(doc_list)

5)将文档的块数据embedding到向量数据库

#文档embedding到向量数据库
embedding_model = OpenAIEmbeddings()
vectorstore = FAISS.from_texts(texts=chunks,
                                  embedding=embedding_model)

6)构建chain链

qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=vectorstore.as_retriever(),
    return_source_documents=True,
)

7)测试样例准备

## 定义要测试的样本问题,可以定义多个,这里方便看测试效果,暂只定义1个
eval_questions = [
    "美国总统是谁?"
]

eval_answers = [
    "拜登"
]

examples = [
    {"query": q, "ground_truths": [eval_answers[i]]}
    for i, q in enumerate(eval_questions)
]
## 看一下从知识库里搜索出来的答案
result = qa_chain({"query": eval_questions[0]})
print(result)
{'query': '美国总统是谁?', 'result': '美国总统是拜登。', 'source_documents': [Document(page_content='1. 美国总统是谁?\n   拜登\n2. 印度人吃饭的工具是什么?\n   右手\n3. CBA是什么?\n   CBA是指中国男子篮球职业联赛(China Basketball Association),这是中国最高等级的篮球联赛\n4. 佛教起源哪里?\n   古印度\n5. 美国的职业篮球赛叫什么?\n   NBA,全称为National Basketball Association,中文名为美国职业篮球联赛,是北美地区的最高等级职业篮球赛事\n6. 什么是LangChain?\nLangChain是一个开源框架,允许从事人工智能的开发者将例如GPT-4的大语言模型与外部计算和数据来源结合起来。该框架目前以Python或JavaScript包的形式提供。\n7. 什么是大模型?\n大模型(Large Language Models)是一种人工智能模型,被训练成理解和生成人类语言。\n大模型通常是指具有数百万到数十亿参数的神经网络模型,需要大量的计算资源和存储空间来训练和存储,并且往往需要进行分布式计算和特殊的硬件加速技术。\n8. 什么是AIGC?'), Document(page_content='8. 什么是AIGC?\nAIGC,即AI-Generated Content,是一种利用人工智能技术自动生成的内容。它涵盖了多种内容形式,包括但不限于图片、视频、音乐和文字等。')]}

 8)创建评估测试链,评估结果对比

##评估测试
from ragas.metrics import (
    faithfulness,
    answer_relevancy,
    context_precision,
    context_recall,
    context_relevancy,
)

# 1.创建"忠诚度"评估chains链
faithfulness_chain = RagasEvaluatorChain(metric=faithfulness)
# 2.创建“答案相关性”评估链
answer_rel_chain = RagasEvaluatorChain(metric=answer_relevancy)
# 3.创建“上下文精准度”评估链
context_pre_chain = RagasEvaluatorChain(metric=context_precision)
# 4.创建“上下文召回率”评估链
context_recall_chain = RagasEvaluatorChain(metric=context_recall)
# 5.创建“上下文相关性”评估链
context_relevancy_chain = RagasEvaluatorChain(metric=context_relevancy)

##预测值
predict = qa_chain.batch(examples)
##预测值与真实值对比
result1 = faithfulness_chain.evaluate(examples,predict)
print(result1)
time.sleep(30)

result2 = answer_rel_chain.evaluate(examples,predict)
print(result2)
time.sleep(30)

result3 = context_pre_chain.evaluate(examples,predict)
print(result3)
time.sleep(30)

result4 = context_recall_chain.evaluate(examples,predict)
print(result4)
time.sleep(30)

result5 = context_relevancy_chain.evaluate(examples,predict)
print(result5)

总结

总之,AI大模型的智能评估是一个复杂而重要的任务。Ragas框架作为一个综合性的评估工具,为用户提供了从多个维度全面评估AI模型的能力。通过使用Ragas,用户可以更好地了解模型的优势和潜在风险,从而做出更明智的决策和优化方向。随着AI技术的不断发展,智能评估工具和方法也将不断进步,以满足不断增长的AI应用需求。

探索未知,分享所知;点击关注,码路同行,寻道人生!

03-18
<think>好的,用户让我介绍一下RAGAS。首先,我需要确定RAGAS是什么。根据之前的对话,用户之前询问了Neo4j,现在转向RAGAS,可能是在继续探索技术相关的内容。RAGAS听起来像是一个缩写,可能和机器学习或自然语言处理有关。 回想一下常见的缩写,RAG通常指检索增强生成(Retrieval-Augmented Generation),而RAGAS可能是围绕这个概念的评估框架或工具。需要确认这一点。检索增强生成是近年来在NLP领域流行的技术,结合了检索和生成模型,比如在问答系统中先检索相关文档再生成答案。评估这样的系统需要特定的指标,而RAGAS可能就是为此设计的。 接下来,我需要验证这个假设。通过快速搜索,RAGAS确实是一个用于评估RAG系统的开源框架。它提供多种指标来评估检索和生成的质量,比如上下文相关性、答案忠实度等。用户可能想知道它的核心功能、使用场景、如何工作以及优缺点。 用户可能是开发者、数据科学家或研究人员,正在构建或优化RAG系统,需要评估工具来提升性能。他们可能希望了解RAGAS是否适合他们的项目,如何集成,以及有哪些指标可用。此外,用户可能没有明确说明,但潜在需求可能包括如何开始使用、是否需要编程技能、是否有社区支持等。 需要结构化地介绍RAGAS,包括定义、核心功能、指标、工作流程、优缺点、应用场景和学习资源。确保语言清晰,避免技术术语过多,但又要准确。比如,解释各个指标时,要简明扼要,说明其作用。同时,对比传统评估方法,突出RAGAS的优势,如自动化、全面性。 还要注意用户之前对Neo4j的介绍结构,保持一致性,使用标题、列表、表格等格式化内容,使回答易于阅读。可能需要检查是否有遗漏的重要信息,比如安装方法、代码示例,但根据用户当前的问题,可能不需要深入到具体代码,但提供官方文档链接是必要的。 最后,确保回答符合之前的系统级指令:使用正确的中文,数学公式用$...$,独立公式用$$...$$,但根据当前内容可能不需要数学公式。结构清晰,分步骤介绍,帮助用户逐步理解RAGAS。</think>--- ### **1. 什么是 RAGAS?** **RAGAS**(Retrieval-Augmented Generation Assessment System)是一个**开源评估框架**,专门用于衡量**检索增强生成(RAG)系统**的性能。RAG 系统结合了信息检索(从外部知识库中查找相关文档)和生成模型(基于检索内容生成回答),广泛应用于问答、对话等场景。 **核心目标**:量化 RAG 系统在“检索准确性”和“生成质量”两方面的表现,帮助开发者优化模型。 --- ### **2. 核心功能与指标** RAGAS 提供多维度评估指标,涵盖检索(Retrieval)和生成(Generation)两个阶段: #### **检索阶段评估** | 指标 | 说明 | |---------------------|----------------------------------------------------------------------| | **上下文相关性** | 检索到的文档与问题的相关程度 | | **上下文召回率** | 检索结果是否覆盖了正确答案所需的所有信息 | #### **生成阶段评估** | 指标 | 说明 | |---------------------|----------------------------------------------------------------------| | **答案忠实度** | 生成答案是否严格基于检索到的上下文(避免虚构或矛盾) | | **答案相关性** | 生成答案是否直接、简洁地回答原始问题 | | **答案正确性** | 答案的事实准确性(需结合人工标注或参考答案) | #### **综合指标** - **RAGAS Score**:通过加权上述指标得出的综合评分,反映整体系统性能。 --- ### **3. 工作原理** 1. **输入**:问题(Query)、检索到的上下文(Context)、生成的答案(Answer)、参考答案(Ground Truth,可选)。 2. **计算指标**: - 基于规则(如答案是否包含特定实体)、模型打分(如使用预训练模型判断相关性)或人工标注。 3. **输出**:各指标分数(0~1 范围)及综合分析报告。 --- ### **4. 与传统评估方法的对比** | 传统方法 | RAGAS 的优势 | |---------------------------|-----------------------------------------------------------------------------| | 依赖人工标注和主观判断 | **自动化**评估,支持大规模测试 | | 仅关注最终答案正确性 | **多维度分析**(检索质量、生成一致性等) | | 缺乏标准化指标 | 提供**统一量化标准**,便于不同 RAG 系统横向对比 | --- ### **5. 使用场景** - **RAG 系统开发**:在模型迭代中快速定位瓶颈(如检索不准还是生成偏差)。 - **学术研究**:对比不同 RAG 架构(如变换检索器或生成模型)的效果差异。 - **企业应用**:确保问答系统在部署前满足准确性、可靠性要求。 --- ### **6. 优缺点分析** - **优点**: - **开源免费**:代码公开,支持定制化指标。 - **轻量易用**:Python 库集成,几行代码即可调用。 - **可解释性强**:明确展示各环节的强弱项。 - **缺点**: - 部分指标依赖参考答案(需人工标注)。 - 对非英文场景的支持仍在完善中。 --- ### **7. 快速上手示例** ```python from ragas import evaluate from datasets import Dataset # 准备数据(问题、上下文、生成答案、参考答案) data = { "question": ["爱因斯坦提出了什么理论?"], "contexts": [["爱因斯坦于1905年提出狭义相对论,1915年扩展为广义相对论。"]], "answer": ["爱因斯坦提出了狭义相对论和广义相对论"], "ground_truth": ["爱因斯坦提出了相对论,包括狭义相对论和广义相对论"] } dataset = Dataset.from_dict(data) # 选择评估指标 metrics = [ "context_relevancy", # 上下文相关性 "answer_correctness" # 答案正确性 ] # 执行评估 results = evaluate(dataset, metrics=metrics) print(results) ``` --- ### **8. 学习资源** - **GitHub 仓库**:[RAGAS官方代码库](https://github.com/explodinggradients/ragas) - **文档**:[RAGAS Documentation](https://docs.ragas.io/) - **论文**:《RAGAS: Automated Evaluation of Retrieval Augmented Generation》(arXiv 可查) 如果需要更具体的评估案例或代码调试帮助,可以告诉我您的需求! 🚀
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值