导读
Transformer架构自2017年诞生以来,彻底改变了自然语言处理(NLP)领域。其独特的架构设计衍生出了三大类模型:仅编码器架构、仅解码器架构和编码器-解码器架构。每种架构都有其独特的优势和应用场景,本文将详细解析这三大类架构的特点,并介绍每类架构中的经典模型,带你深入了解Transformer架构的强大之处。
Transformer模型自2017年提出以来,已经成为自然语言处理(NLP)领域的核心技术之一。其架构主要分为三种变体:Decoder-Only、Encoder-Only和Encoder-Decoder,每种变体都有其独特的特点和应用场景。
Decoder-Only 变体
专注于文本生成任务,如语言模型、文本续写等。它使用标准的Transformer Decoder部分,但稍作改动,例如使用因果掩码(Causal Mask)来确保模型在生成文本时只能关注当前和之前的Token。
Encoder-Only 变体
擅长分析文本内容,如文本分类、问答系统等。这类模型只使用Transformer的Encoder部分,能够生成文本的上下文表示,这些表示可以用于各种下游任务。
Encoder-Decoder 变体
特点:融合了编码和解码能力,适用于文本到文本的任务,如机器翻译、文本摘要等。编码器负责理解输入文本,解码器负责生成输出文本。
1. 仅编码器架构(Encoder-only)
==============================
unset
unset1.1 工作原理unset
unset
仅编码器架构的工作流程如下:
- 开始:
- 输入文本。
- 嵌入层处理:
-
对输入文本的每个单词或标记进行处理。
-
将每个单词或标记映射到一个固定维度的向量空间中,形成初始的词嵌入向量。
- 位置编码添加:
-
对词嵌入向量添加位置编码。
-
引入序列中单词的位置信息,使模型能够感知单词的顺序。
- 多层编码器处理(循环执行,层数根据模型设定):
-
将前馈神经网络的输出与该层编码器的输入进行残差连接(相加操作)。
-
对残差连接后的结果进行层归一化操作,稳定训练过程,防止梯度消失或爆炸。
-
将经过多头自注意力机制处理后的向量输入前馈神经网络。
-
进行进一步的特征转换和非线性映射,增强模型的表达能力。
-
计算查询(Query)、键(Key)和值(Value)之间的点积注意力。
-
让每个单词关注到序列中其他单词的信息,提取全局上下文特征。
-
多头自注意力机制模块:
-
前馈神经网络模块:
-
残差连接和层归一化:
- 输出:
- 经过多层编码器堆叠处理后,输出一个上下文丰富的语义表示向量。
- 下游任务:
- 将语义表示向量用于后续的各种下游任务,如文本分类、情感分析等。
- 结束:
- 流程结束。
unset
unset1.2 特点unset
unset
仅编码器架构具有以下特点:
-
擅长处理无序任务:由于其能够提取全局上下文信息,对于文本分类、情感分析、命名实体识别等任务表现出色。这些任务通常不需要生成新的文本,而是对输入文本进行分类或标注,仅编码器架构能够很好地满足需求。
-
并行处理效率高:与传统的循环神经网络(RNN)不同,仅编码器架构不依赖于序列的顺序处理,可以并行计算整个输入序列,大大提高了处理速度,适合处理大规模数据集。
-
输出固定长度向量:仅编码器架构的输出是一个固定长度的向量表示,无法直接生成文本序列。这使得它在需要生成文本的任务(如机器翻译、文本生成等)中不适用,但在需要对输入文本进行编码和分类的任务中非常有效。
-
模型结构简单:仅包含编码器部分,结构相对简单,训练和推理过程较为高效,易于实现和优化。
unset
unset1.3 经典模型unset
unset
BERT(Bidirectional Encoder Representations from Transformers)是仅编码器架构的经典模型之一,具有以下特点:
-
双向上下文编码:BERT通过使用掩码语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)两种预训练任务,能够学习到双向的上下文信息。在MLM任务中,随机掩盖输入序列中的一些单词,然后预测这些被掩盖的单词;在NSP任务中,判断两个句子是否是连续的文本。这种双向编码方式使得BERT能够更好地理解单词在上下文中的含义。
-
强大的语言理解能力:BERT在多种自然语言处理任务上取得了突破性的成果,如文本分类、问答系统、命名实体识别等。其强大的语言理解能力得益于其能够捕捉到丰富的上下文信息,使得模型对语言的理解更加准确和深入。
-
预训练与微调相结合:BERT采用预训练加微调的范式。首先在大规模无监督语料上进行预训练,学习通用的语言知识;然后在特定任务上进行微调,通过调整模型的参数来适应具体的任务需求。这种范式大大提高了模型的性能和泛化能力。
-
广泛的应用:BERT及其变体(如RoBERTa、ALBERT等)被广泛应用于各种自然语言处理任务中,成为许多任务的首选模型。其成功也推动了后续基于Transformer架构的模型的发展和创新。
2. 仅解码器架构(Decoder-only)
==============================
unset
unset2.1 工作原理unset
unset
仅解码器架构的工作流程如下:
- 开始:
- 输入序列。
- 嵌入层处理:
-
对输入序列的每个单词或标记进行处理。
-
将每个单词或标记映射到一个固定维度的向量空间中,得到初始的词嵌入向量。
- 位置编码添加:
-
针对词嵌入向量添加位置编码。
-
引入序列中单词的位置信息,使模型能够感知单词顺序。
- 多层解码器处理(循环执行,层数根据模型设定):
-
将前馈神经网络的输出与该层解码器的输入进行残差连接(相加操作)。
-
对残差连接后的结果执行层归一化操作,稳定训练过程,避免梯度消失或爆炸。
-
把经过掩码多头自注意力机制处理后的向量输入到前馈神经网络中。
-
进行进一步的特征转换和非线性映射,增强模型的表达能力。
-
计算查询(Query)、键(Key)和值(Value)之间的点积注意力。
-
运用掩码矩阵,防止模型在计算当前词的注意力分数时访问未来位置的信息,保证生成过程的顺序性。
-
掩码多头自注意力机制模块:
-
前馈神经网络模块:
-
残差连接和层归一化:
- 输出序列生成:
-
经过多层解码器堆叠处理后,模型开始逐步生成输出序列。
-
在每一步生成过程中,模型仅依据已生成的序列信息预测下一个词。
-
持续预测,直到生成结束标记。
- 结束:
- 流程结束,输出完整的输出序列。
unset
unset2.2 特点unset
unset
仅解码器架构具有以下特点:
-
擅长生成任务:由于其逐步生成输出序列的特性,非常适合文本生成、语言模型等任务,能够生成连贯且符合语言规则的文本。
-
依赖上下文信息:虽然无法直接处理输入序列,但可以通过额外的机制(如预训练时的上下文信息)为模型提供必要的上下文,从而生成与上下文相关的文本。
-
生成过程顺序性:通过掩码多头自注意力机制,模型在生成每个词时只能访问已生成的序列,保证了生成过程的顺序性,避免了信息泄露。
-
模型结构相对简单:仅包含解码器部分,结构相对简单,训练和推理过程较为高效,易于实现和优化。
unset
unset2.3 经典模型unset
unset
GPT(Generative Pre-trained Transformer)是仅解码器架构的经典模型之一,具有以下特点:
-
强大的文本生成能力:GPT通过预训练大量的文本数据,学习到了丰富的语言知识和生成模式,能够生成高质量的文本,如新闻报道、故事创作、代码生成等。
-
单向语言模型:GPT采用单向语言模型的预训练方式,即根据已知的前文预测下一个词。这种单向生成方式使得模型在生成文本时能够保持连贯性和逻辑性。
-
预训练与微调相结合:GPT同样采用预训练加微调的范式。预训练阶段在大规模无监督语料上学习通用的语言知识;微调阶段则在特定任务上调整模型参数,以适应具体的应用需求。
-
广泛的应用:GPT及其后续版本(如GPT-2、GPT-3、GPT-4等)被广泛应用于各种自然语言生成任务中,成为文本生成领域的代表性模型。其强大的生成能力也推动了自然语言处理领域的发展。
3. 编码器 - 解码器架构(Encoder - Decoder)
========================================
unset
unset3.1 工作原理unset
unset
编码器 - 解码器架构的工作流程如下:
-
输入序列首先经过嵌入层,将每个单词或标记映射到一个固定维度的向量空间中,形成初始的词嵌入向量。
-
接着,对词嵌入向量添加位置编码,以引入序列中单词的位置信息,使得模型能够感知单词的顺序。
-
处理后的向量作为输入,传递给编码器。编码器由多层编码器堆叠而成,每一层编码器都包含两个主要模块:多头自注意力机制和前馈神经网络。在多头自注意力机制中,模型通过计算查询(Query)、键(Key)和值(Value)之间的点积注意力,让每个单词能够关注到序列中其他单词的信息,从而提取全局上下文特征。经过多头自注意力机制处理后的向量,会通过一个前馈神经网络进行进一步的特征转换和非线性映射,增强模型的表达能力。每一层编码器的输出都会通过残差连接和层归一化操作,以稳定训练过程,防止梯度消失或爆炸。最终,经过多层编码器堆叠处理后,输出一个上下文丰富的语义表示向量。
-
解码器同样由多层解码器堆叠而成,每一层解码器包含三个主要模块:掩码多头自注意力机制、编码器 - 解码器注意力机制和前馈神经网络。在掩码多头自注意力机制中,模型通过计算查询(Query)、键(Key)和值(Value)之间的点积注意力,并使用掩码矩阵防止模型在计算当前词的注意力分数时访问未来位置的信息,从而确保生成过程的顺序性。编码器 - 解码器注意力机制则将解码器的查询(Query)与编码器的键(Key)和值(Value)进行注意力计算,从而将编码器的上下文信息融入解码器的输出。经过编码器 - 解码器注意力机制处理后的向量,会通过一个前馈神经网络进行进一步的特征转换和非线性映射,增强模型的表达能力。每一层解码器的输出都会通过残差连接和层归一化操作,以稳定训练过程,防止梯度消失或爆炸。最终,经过多层解码器堆叠处理后,模型逐步生成一个完整的输出序列。在每一步生成过程中,模型仅根据已生成的序列信息和编码器的上下文信息预测下一个词,直到生成结束标记。
unset
unset3.2 特点unset
unset
编码器 - 解码器架构具有以下特点:
-
适用于序列到序列任务:编码器 - 解码器架构能够将输入序列编码为上下文向量,然后利用该向量逐步生成输出序列,适用于机器翻译、文本摘要、问答系统等序列到序列的任务,能够处理不同长度的输入和输出序列。
-
强大的上下文建模能力:编码器通过多头自注意力机制提取输入序列的全局上下文信息,解码器通过编码器 - 解码器注意力机制充分利用编码器的上下文信息,从而能够生成与输入序列语义相关且连贯的输出序列。
-
模型复杂度较高:由于编码器和解码器都包含多层堆叠结构,且每层都包含多个子模块,模型的参数量较大,训练和推理时间较长,对计算资源的要求较高。
-
并行处理能力有限:虽然编码器可以并行处理输入序列,但解码器在生成输出序列时是逐步进行的,无法完全并行化,导致整体的并行处理能力受到一定限制。
unset
unset3.3 经典模型unset
unset
原始的Transformer是编码器 - 解码器架构的经典模型之一,具有以下特点:
-
开创性的架构设计:Transformer首次提出了基于自注意力机制的编码器 - 解码器架构,摒弃了传统的循环神经网络(RNN)及其变体(如LSTM和GRU),通过并行计算和注意力机制高效处理序列数据,大大提高了训练效率和模型性能。
-
多头注意力机制:Transformer的编码器和解码器都采用了多头注意力机制,能够从不同角度捕捉序列中的特征,增强了模型的表达能力和对长距离依赖关系的建模能力。多头注意力机制通过将输入分割成多个“头”,每个头独立计算注意力权重,然后将所有头的输出拼接起来,从而能够捕捉到输入序列中不同子空间的特征。
-
预训练与微调相结合:Transformer同样采用预训练加微调的范式。预训练阶段在大规模无监督语料上学习通用的语言知识;微调阶段则在特定任务上调整模型参数,以适应具体的应用需求。这种范式大大提高了模型的性能和泛化能力。
-
广泛的应用:Transformer及其变体(如T5、BART等)被广泛应用于各种自然语言处理任务中,如机器翻译、文本摘要、问答系统等,成为许多任务的首选模型。其成功也推动了后续基于Transformer架构的模型的发展和创新。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈