选择合适的硬件设施来支持大模型的本地部署,需要考虑以下几个关键因素:
-
GPU 选择:NVIDIA GPU 在 AI 领域具有垄断性优势,特别是 CUDA 核心和 Tensor 核心对于深度学习算法中矩阵运算的加速至关重要 。对于大规模模型训练,推荐使用高性能的 NVIDIA A100 GPU,而中等规模的需求可以考虑 GeForce RTX 4090 等消费级 GPU 。
-
显存容量:大模型训练和推理过程中需要大量的显存。例如,千亿参数的大模型可能需要200-300GB的显存空间 。因此,选择 GPU 时需要确保其具备足够的显存容量。
-
内存和存储:大模型需要高性能的计算机硬件来保证训练效率和速度,建议选择高速的 ECC 或 DDR5 内存,并配备大容量、高速的存储设备,如 SSD 或 NVMe 固态硬盘 。
-
CPU 和主板:虽然 GPU 是大模型训练的主要硬件,但 CPU 和主板也不可忽视。推荐使用支持多路 GPU 并具有高速缓存和内存控制器的 CPU,以及支持高速 PCIe 接口和足够扩展槽的主板 。
-
网络通信:大模型训练可能需要多卡或多节点并行计算,这就需要高速的网络通信能力ÿ