机器人强化学习入门学习笔记

(1)物理引擎

      物理引擎就是模拟真实世界物理规律的软件工具。它会根据你给定的物体、质量、形状、力等信息,计算这些物体在时间上的运动和相互作用。如果你设计了一个机器人,那物理引擎就是“虚拟现实世界”,让机器人在里面“活起来”,模拟它走路、抓东西、摔倒等动作。而物理引擎通常负责这些任务:

功能 解释
刚体动力学(Rigid Body Dynamics) 模拟物体的移动和旋转,比如自由落体、抛物运动。
关节系统(Joints) 模拟多个身体之间的连接,比如机器人手臂的旋转关节。
碰撞检测(Collision Detection) 判断两个物体是否接触,防止物体“穿透”。
碰撞响应(Collision Response) 当发生碰撞时如何反应,比如反弹、滑动、停止。
摩擦与力学 模拟地面摩擦力、弹力、重力等。
控制接口(Actuators) 你可以给机器人施加控制力,比如“推一下”或“电机转动”。

MuJoCo(Multi-Joint dynamics with Contact)是一个高性能的物理引擎,广泛用于机器人学、强化学习和具身智能等领域。它特别擅长处理具有复杂接触和关节动力学的系统,比如机器人手臂、腿型机器人等。


🔧 MuJoCo 的主要特点:

  1. 精确的物理建模

    • 支持刚体动力学、多关节系统、摩擦、碰撞等。

    • 提供软约束(soft constraints)模拟,更稳定。

  2. 高性能

    • 使用C语言编写,模拟效率高,特别适合大规模强化学习训练。

  3. 描述性建模语言 MJCF

    • 使用 MJCF(MuJoCo XML)语言描述模型结构,支持灵活的建模方式。

  4. 强大的可视化支持

    • 支持实时仿真和三维可视化,便于调试和展示。

  5. Python 接口(通过 mujoco-pydm_control):

    • 可与 OpenAI Gym、DeepMind 控制套件集成,便于强化学习研究。

  6. 免费开源

    • 2022年以后由 DeepMind 开源,MIT 许可证。


🧠 常见使用场景:

  • 强化学习训练(例如 PPO、SAC、TD3)

  • 机器人控制算法测试

  • 具身智能研究(如操纵、导航等)

  • 动作捕捉、仿生系统建模


🧩 类似的物理引擎对比:

引擎名称 语言 特点 是否开源
MuJoCo C / Python 高精度接触建模,效率高,适合RL
PyBullet C++ / Python 易用,支持URDF建模,适合快速实验
Isaac Gym Py
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaomu_347

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值