occ网络学习

Occ网络(Occupancy Network)是一种用于3D场景表示的深度学习模型。它通过一个神经网络将空间中的每个点映射为其是否被占据的概率,从而能够表示复杂的几何形状。这个方法广泛应用于自动驾驶、机器人和虚拟现实等领域。简单理解OCC是一种基于学习的三维重建方法,通过产生3D体素,将这些3D体素与3D重建体素(Nerf离线训练得到)进行比较,从而实现感知识别,既能辨别出“不能碰的物体”又能发现“可以碰的网格”。以下是其主要特点和工作原理的白话解释:

(1) 和3d检测相比

自动驾驶在动静态障碍物感知领域的发展大概分为三个阶段:
1)2D图像空间检测障碍物,映射到鸟瞰空间做多相机和时序融合;
2)直接在BEV空间中完成动态障碍物的3D检测和静态障碍物的识别建模;
3)直接在3D空间中感知占用关系,为系统规划可行驶空间。
目前2D检测方案基本被抛弃,逐渐转为BEV空间下的3D检测任务,这种方式更加友好,可以直接输出下游可用的目标。然而BEV感知也同样面临一些难解决的问题,比如截断目标、形状不规则、未有清晰语义的目标(比如挂车、树木、垃圾、以及石子等),传统的3D检测在这类场景上很容易失效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaomu_347

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值